These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64 related articles for article (PubMed ID: 26010474)
21. Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil. Deng L; Zeng G; Fan C; Lu L; Chen X; Chen M; Wu H; He X; He Y Appl Microbiol Biotechnol; 2015 Oct; 99(19):8259-69. PubMed ID: 26062530 [TBL] [Abstract][Full Text] [Related]
22. Diversity of prokaryotes associated with soils around coal-fire gas vents in MaNasi county of Xinjiang, China. Zhang T; Xu J; Zeng J; Lou K Antonie Van Leeuwenhoek; 2013 Jan; 103(1):23-36. PubMed ID: 22843287 [TBL] [Abstract][Full Text] [Related]
23. Survival of introduced phosphate-solubilizing bacteria (PSB) and their impact on microbial community structure during the phytoextraction of Cd-contaminated soil. Jeong S; Moon HS; Shin D; Nam K J Hazard Mater; 2013 Dec; 263 Pt 2():441-9. PubMed ID: 24231320 [TBL] [Abstract][Full Text] [Related]
24. 2,4-D impact on bacterial communities, and the activity and genetic potential of 2,4-D degrading communities in soil. Gonod LV; Martin-Laurent F; Chenu C FEMS Microbiol Ecol; 2006 Dec; 58(3):529-37. PubMed ID: 17117994 [TBL] [Abstract][Full Text] [Related]
25. Changes in lead availability affect bacterial community structure but not basal respiration in a microcosm study with forest soils. Lazzaro A; Schulin R; Widmer F; Frey B Sci Total Environ; 2006 Dec; 371(1-3):110-24. PubMed ID: 17023024 [TBL] [Abstract][Full Text] [Related]
26. Dynamics and identification of soil microbial populations actively assimilating carbon from 13C-labelled wheat residue as estimated by DNA- and RNA-SIP techniques. Bernard L; Mougel C; Maron PA; Nowak V; Lévêque J; Henault C; Haichar FZ; Berge O; Marol C; Balesdent J; Gibiat F; Lemanceau P; Ranjard L Environ Microbiol; 2007 Mar; 9(3):752-64. PubMed ID: 17298374 [TBL] [Abstract][Full Text] [Related]
27. 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. Chan OC; Yang X; Fu Y; Feng Z; Sha L; Casper P; Zou X FEMS Microbiol Ecol; 2006 Nov; 58(2):247-59. PubMed ID: 17064266 [TBL] [Abstract][Full Text] [Related]
28. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Kirk JL; Klironomos JN; Lee H; Trevors JT Environ Pollut; 2005 Feb; 133(3):455-65. PubMed ID: 15519721 [TBL] [Abstract][Full Text] [Related]
29. Changes in soil Acidobacteria communities after 2,4,6-trinitrotoluene contamination. George IF; Liles MR; Hartmann M; Ludwig W; Goodman RM; Agathos SN FEMS Microbiol Lett; 2009 Jun; 296(2):159-66. PubMed ID: 19459956 [TBL] [Abstract][Full Text] [Related]
30. Implication of graphene oxide in Cd-contaminated soil: A case study of bacterial communities. Xiong T; Yuan X; Wang H; Leng L; Li H; Wu Z; Jiang L; Xu R; Zeng G J Environ Manage; 2018 Jan; 205():99-106. PubMed ID: 28968591 [TBL] [Abstract][Full Text] [Related]
31. Bacterial community structure and carbon turnover in permafrost-affected soils of the Lena Delta, northeastern Siberia. Wagner D; Kobabe S; Liebner S Can J Microbiol; 2009 Jan; 55(1):73-83. PubMed ID: 19190703 [TBL] [Abstract][Full Text] [Related]
32. Impacts of 2,4-D application on soil microbial community structure and on populations associated with 2,4-D degradation. Macur RE; Wheeler JT; Burr MD; Inskeep WP Microbiol Res; 2007; 162(1):37-45. PubMed ID: 16814534 [TBL] [Abstract][Full Text] [Related]
33. Identification of dominant bacterial phylotypes in a cadmium-treated forest soil. Lazzaro A; Widmer F; Sperisen C; Frey B FEMS Microbiol Ecol; 2008 Feb; 63(2):143-55. PubMed ID: 18093142 [TBL] [Abstract][Full Text] [Related]
34. Succession of bacterial community structure and diversity in soil along a chronosequence of reclamation and re-vegetation on coal mine spoils in China. Li Y; Wen H; Chen L; Yin T PLoS One; 2014; 9(12):e115024. PubMed ID: 25502754 [TBL] [Abstract][Full Text] [Related]
35. Effects of graphene oxide and graphite on soil bacterial and fungal diversity. Forstner C; Orton TG; Skarshewski A; Wang P; Kopittke PM; Dennis PG Sci Total Environ; 2019 Jun; 671():140-148. PubMed ID: 30928743 [TBL] [Abstract][Full Text] [Related]
36. Effects of silver-graphene oxide nanocomposites on soil microbial communities. Kim MJ; Ko D; Ko K; Kim D; Lee JY; Woo SM; Kim W; Chung H J Hazard Mater; 2018 Mar; 346():93-102. PubMed ID: 29248800 [TBL] [Abstract][Full Text] [Related]
37. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Hao Y; Ma C; Zhang Z; Song Y; Cao W; Guo J; Zhou G; Rui Y; Liu L; Xing B Environ Pollut; 2018 Jan; 232():123-136. PubMed ID: 28947315 [TBL] [Abstract][Full Text] [Related]
38. Effects of carbon nanotubes and derivatives of graphene oxide on soil bacterial diversity. Forstner C; Orton TG; Wang P; Kopittke PM; Dennis PG Sci Total Environ; 2019 Sep; 682():356-363. PubMed ID: 31125749 [TBL] [Abstract][Full Text] [Related]
39. Risks of graphene nanomaterial contamination in the soil: evaluation of major ions. Baysal A; Saygin H; Ustabasi GS Environ Monit Assess; 2020 Sep; 192(10):622. PubMed ID: 32894359 [TBL] [Abstract][Full Text] [Related]