BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 26010986)

  • 1. An evaluation of public genomic references for mapping RNA-Seq data from Chinese hamster ovary cells.
    Le H; Chen C; Goudar CT
    Biotechnol Bioeng; 2015 Nov; 112(11):2412-6. PubMed ID: 26010986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of two public genome references for chinese hamster ovary cells in the context of rna-seq based gene expression analysis.
    Chen C; Le H; Goudar CT
    Biotechnol Bioeng; 2017 Jul; 114(7):1603-1613. PubMed ID: 28295162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards next generation CHO cell biology: Bioinformatics methods for RNA-Seq-based expression profiling.
    Monger C; Kelly PS; Gallagher C; Clynes M; Barron N; Clarke C
    Biotechnol J; 2015 Jul; 10(7):950-66. PubMed ID: 26058739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive evaluation of ensembl, RefSeq, and UCSC annotations in the context of RNA-seq read mapping and gene quantification.
    Zhao S; Zhang B
    BMC Genomics; 2015 Feb; 16(1):97. PubMed ID: 25765860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bioinformatics Pipeline for the Identification of CHO Cell Differential Gene Expression from RNA-Seq Data.
    Monger C; Motheramgari K; McSharry J; Barron N; Clarke C
    Methods Mol Biol; 2017; 1603():169-186. PubMed ID: 28493130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global insights into the Chinese hamster and CHO cell transcriptomes.
    Vishwanathan N; Yongky A; Johnson KC; Fu HY; Jacob NM; Le H; Yusufi FN; Lee DY; Hu WS
    Biotechnol Bioeng; 2015 May; 112(5):965-76. PubMed ID: 25450749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a public CHO cell line transcript database using versatile bioinformatics analysis pipelines.
    Rupp O; Becker J; Brinkrolf K; Timmermann C; Borth N; Pühler A; Noll T; Goesmann A
    PLoS One; 2014; 9(1):e85568. PubMed ID: 24427317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An automated RNA-Seq analysis pipeline to identify and visualize differentially expressed genes and pathways in CHO cells.
    Chen C; Le H; Goudar CT
    Biotechnol Prog; 2015; 31(5):1150-62. PubMed ID: 26150012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Augmenting Chinese hamster genome assembly by identifying regions of high confidence.
    Vishwanathan N; Bandyopadhyay AA; Fu HY; Sharma M; Johnson KC; Mudge J; Ramaraj T; Onsongo G; Silverstein KA; Jacob NM; Le H; Karypis G; Hu WS
    Biotechnol J; 2016 Sep; 11(9):1151-7. PubMed ID: 27374913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing and annotating the genome using RNA-seq data.
    Chen G; Shi T; Shi L
    Sci China Life Sci; 2017 Feb; 60(2):116-125. PubMed ID: 27294835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chinese hamster genome database: an online resource for the CHO community at www.CHOgenome.org.
    Hammond S; Kaplarevic M; Borth N; Betenbaugh MJ; Lee KH
    Biotechnol Bioeng; 2012 Jun; 109(6):1353-6. PubMed ID: 22105744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A differential k-mer analysis pipeline for comparing RNA-Seq transcriptome and meta-transcriptome datasets without a reference.
    Chan CK; Rosic N; Lorenc MT; Visendi P; Lin M; Kaniewska P; Ferguson BJ; Gresshoff PM; Batley J; Edwards D
    Funct Integr Genomics; 2019 Mar; 19(2):363-371. PubMed ID: 30483906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network reconstruction of the mouse secretory pathway applied on CHO cell transcriptome data.
    Lund AM; Kaas CS; Brandl J; Pedersen LE; Kildegaard HF; Kristensen C; Andersen MR
    BMC Syst Biol; 2017 Mar; 11(1):37. PubMed ID: 28298216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A scaffold for the Chinese hamster genome.
    Wlaschin KF; Hu WS
    Biotechnol Bioeng; 2007 Oct; 98(2):429-39. PubMed ID: 17390381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A global RNA-seq-driven analysis of CHO host and production cell lines reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation.
    Könitzer JD; Müller MM; Leparc G; Pauers M; Bechmann J; Schulz P; Schaub J; Enenkel B; Hildebrandt T; Hampel M; Tolstrup AB
    Biotechnol J; 2015 Sep; 10(9):1412-23. PubMed ID: 26212696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments.
    Vijay N; Poelstra JW; Künstner A; Wolf JB
    Mol Ecol; 2013 Feb; 22(3):620-34. PubMed ID: 22998089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of RNA-Seq data with TopHat and Cufflinks for genome-wide expression analysis of jasmonate-treated plants and plant cultures.
    Pollier J; Rombauts S; Goossens A
    Methods Mol Biol; 2013; 1011():305-15. PubMed ID: 23616006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expanding the Chinese hamster ovary cell long noncoding RNA transcriptome using RNASeq.
    Motheramgari K; Valdés-Bango Curell R; Tzani I; Gallagher C; Castro-Rivadeneyra M; Zhang L; Barron N; Clarke C
    Biotechnol Bioeng; 2020 Oct; 117(10):3224-3231. PubMed ID: 32558938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of RNA-Seq Data Using TopHat and Cufflinks.
    Ghosh S; Chan CK
    Methods Mol Biol; 2016; 1374():339-61. PubMed ID: 26519415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq.
    Lu B; Zeng Z; Shi T
    Sci China Life Sci; 2013 Feb; 56(2):143-55. PubMed ID: 23393030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.