BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 26010986)

  • 21. Prediction of transcribed PIWI-interacting RNAs from CHO RNAseq data.
    Gerstl MP; Hackl M; Graf AB; Borth N; Grillari J
    J Biotechnol; 2013 Jun; 166(1-2):51-7. PubMed ID: 23639388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus).
    Zhu Y; Li Y; Xin D; Chen W; Shao X; Wang Y; Guo W
    Gene; 2015 Jan; 555(2):362-76. PubMed ID: 25447903
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Systematic Approach to Time-series Metabolite Profiling and RNA-seq Analysis of Chinese Hamster Ovary Cell Culture.
    Hsu HH; Araki M; Mochizuki M; Hori Y; Murata M; Kahar P; Yoshida T; Hasunuma T; Kondo A
    Sci Rep; 2017 Mar; 7():43518. PubMed ID: 28252038
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discovery of transcription start sites in the Chinese hamster genome by next-generation RNA sequencing.
    Jakobi T; Brinkrolf K; Tauch A; Noll T; Stoye J; Pühler A; Goesmann A
    J Biotechnol; 2014 Nov; 190():64-75. PubMed ID: 25086342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of de novo transcriptome assemblies from RNA-Seq data.
    Li B; Fillmore N; Bai Y; Collins M; Thomson JA; Stewart R; Dewey CN
    Genome Biol; 2014 Dec; 15(12):553. PubMed ID: 25608678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Utilization of Tissue Ploidy Level Variation in
    Ojeda DI; Mattila TM; Ruttink T; Kujala ST; Kärkkäinen K; Verta JP; Pyhäjärvi T
    G3 (Bethesda); 2019 Oct; 9(10):3409-3421. PubMed ID: 31427456
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reaching the depth of the Chinese hamster ovary cell transcriptome.
    Jacob NM; Kantardjieff A; Yusufi FN; Retzel EF; Mulukutla BC; Chuah SH; Yap M; Hu WS
    Biotechnol Bioeng; 2010 Apr; 105(5):1002-9. PubMed ID: 19882695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GASS: genome structural annotation for Eukaryotes based on species similarity.
    Wang Y; Chen L; Song N; Lei X
    BMC Genomics; 2015 Mar; 16(1):150. PubMed ID: 25764973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of the impact of using a reference transcriptome in mapping short RNA-Seq reads.
    Zhao S
    PLoS One; 2014; 9(7):e101374. PubMed ID: 24992027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SLAM-seq reveals early transcriptomic response mechanisms upon glutamine deprivation in Chinese hamster ovary cells.
    Papež M; Jiménez Lancho V; Eisenhut P; Motheramgari K; Borth N
    Biotechnol Bioeng; 2023 Apr; 120(4):970-986. PubMed ID: 36575109
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring the transcriptome space of a recombinant BHK cell line through next generation sequencing.
    Johnson KC; Yongky A; Vishwanathan N; Jacob NM; Jayapal KP; Goudar CT; Karypis G; Hu WS
    Biotechnol Bioeng; 2014 Apr; 111(4):770-81. PubMed ID: 24249083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An RNA-seq based transcriptomic investigation into the productivity and growth variants with Chinese hamster ovary cells.
    Sha S; Bhatia H; Yoon S
    J Biotechnol; 2018 Apr; 271():37-46. PubMed ID: 29476805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. deGPS is a powerful tool for detecting differential expression in RNA-sequencing studies.
    Chu C; Fang Z; Hua X; Yang Y; Chen E; Cowley AW; Liang M; Liu P; Lu Y
    BMC Genomics; 2015 Jun; 16(1):455. PubMed ID: 26070955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromosome-scale scaffolds for the Chinese hamster reference genome assembly to facilitate the study of the CHO epigenome.
    Hilliard W; MacDonald ML; Lee KH
    Biotechnol Bioeng; 2020 Aug; 117(8):2331-2339. PubMed ID: 32410221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptomic changes in CHO cells after adaptation to suspension growth in protein-free medium analysed by a species-specific microarray.
    Shridhar S; Klanert G; Auer N; Hernandez-Lopez I; Kańduła MM; Hackl M; Grillari J; Stralis-Pavese N; Kreil DP; Borth N
    J Biotechnol; 2017 Sep; 257():13-21. PubMed ID: 28302587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Translatome analysis of CHO cells to identify key growth genes.
    Courtes FC; Lin J; Lim HL; Ng SW; Wong NS; Koh G; Vardy L; Yap MG; Loo B; Lee DY
    J Biotechnol; 2013 Sep; 167(3):215-24. PubMed ID: 23876478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNA-Seq analysis of the wild barley (H. spontaneum) leaf transcriptome under salt stress.
    Bahieldin A; Atef A; Sabir JS; Gadalla NO; Edris S; Alzohairy AM; Radhwan NA; Baeshen MN; Ramadan AM; Eissa HF; Hassan SM; Baeshen NA; Abuzinadah O; Al-Kordy MA; El-Domyati FM; Jansen RK
    C R Biol; 2015 May; 338(5):285-97. PubMed ID: 25882349
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CHO genome mining for synthetic promoter design.
    Johari YB; Brown AJ; Alves CS; Zhou Y; Wright CM; Estes SD; Kshirsagar R; James DC
    J Biotechnol; 2019 Mar; 294():1-13. PubMed ID: 30703471
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA-Seq for transcriptome analysis in non-model plants.
    Garg R; Jain M
    Methods Mol Biol; 2013; 1069():43-58. PubMed ID: 23996307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.