These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

612 related articles for article (PubMed ID: 26011256)

  • 1. Construction of High Density Sweet Cherry (Prunus avium L.) Linkage Maps Using Microsatellite Markers and SNPs Detected by Genotyping-by-Sequencing (GBS).
    Guajardo V; Solís S; Sagredo B; Gainza F; Muñoz C; Gasic K; Hinrichsen P
    PLoS One; 2015; 10(5):e0127750. PubMed ID: 26011256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and comparative analyses of highly dense linkage maps of two sweet cherry intra-specific progenies of commercial cultivars.
    Klagges C; Campoy JA; Quero-García J; Guzmán A; Mansur L; Gratacós E; Silva H; Rosyara UR; Iezzoni A; Meisel LA; Dirlewanger E
    PLoS One; 2013; 8(1):e54743. PubMed ID: 23382953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding.
    Shirasawa K; Isuzugawa K; Ikenaga M; Saito Y; Yamamoto T; Hirakawa H; Isobe S
    DNA Res; 2017 Oct; 24(5):499-508. PubMed ID: 28541388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of Commercial Sweet Cherry Linkage Maps and QTL Analysis for Trunk Diameter.
    Wang J; Zhang K; Zhang X; Yan G; Zhou Y; Feng L; Ni Y; Duan X
    PLoS One; 2015; 10(10):e0141261. PubMed ID: 26516760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a High-Density American Cranberry (
    Schlautman B; Covarrubias-Pazaran G; Diaz-Garcia L; Iorizzo M; Polashock J; Grygleski E; Vorsa N; Zalapa J
    G3 (Bethesda); 2017 Apr; 7(4):1177-1189. PubMed ID: 28250016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-density multi-population consensus genetic linkage map for peach.
    da Silva Linge C; Antanaviciute L; Abdelghafar A; Arús P; Bassi D; Rossini L; Ficklin S; Gasic K
    PLoS One; 2018; 13(11):e0207724. PubMed ID: 30462743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting genotyping by sequencing to characterize the genomic structure of the American cranberry through high-density linkage mapping.
    Covarrubias-Pazaran G; Diaz-Garcia L; Schlautman B; Deutsch J; Salazar W; Hernandez-Ochoa M; Grygleski E; Steffan S; Iorizzo M; Polashock J; Vorsa N; Zalapa J
    BMC Genomics; 2016 Jun; 17():451. PubMed ID: 27295982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity.
    Verde I; Jenkins J; Dondini L; Micali S; Pagliarani G; Vendramin E; Paris R; Aramini V; Gazza L; Rossini L; Bassi D; Troggio M; Shu S; Grimwood J; Tartarini S; Dettori MT; Schmutz J
    BMC Genomics; 2017 Mar; 18(1):225. PubMed ID: 28284188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a highly saturated linkage map in Japanese plum (Prunus salicina L.) using GBS for SNP marker calling.
    Carrasco B; González M; Gebauer M; García-González R; Maldonado J; Silva H
    PLoS One; 2018; 13(12):e0208032. PubMed ID: 30507961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-density SNP-based linkage map using genotyping-by-sequencing and its utilization for improved genome assembly of chickpea (Cicer arietinum L.).
    Gaur R; Verma S; Pradhan S; Ambreen H; Bhatia S
    Funct Integr Genomics; 2020 Nov; 20(6):763-773. PubMed ID: 32856221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arietinum L.) using Genotyping-by-Sequencing (GBS).
    Verma S; Gupta S; Bandhiwal N; Kumar T; Bharadwaj C; Bhatia S
    Sci Rep; 2015 Dec; 5():17512. PubMed ID: 26631981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation.
    Ward JA; Bhangoo J; Fernández-Fernández F; Moore P; Swanson JD; Viola R; Velasco R; Bassil N; Weber CA; Sargent DJ
    BMC Genomics; 2013 Jan; 14():2. PubMed ID: 23324311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SNP Discovery by GBS in Olive and the Construction of a High-Density Genetic Linkage Map.
    İpek A; Yılmaz K; Sıkıcı P; Tangu NA; Öz AT; Bayraktar M; İpek M; Gülen H
    Biochem Genet; 2016 Jun; 54(3):313-325. PubMed ID: 26902470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of an almond linkage map in an Australian population Nonpareil x Lauranne.
    Tavassolian I; Rabiei G; Gregory D; Mnejja M; Wirthensohn MG; Hunt PW; Gibson JP; Ford CM; Sedgley M; Wu SB
    BMC Genomics; 2010 Oct; 11():551. PubMed ID: 20932335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid--location of root-knot nematode resistance genes.
    Dirlewanger E; Cosson P; Howad W; Capdeville G; Bosselut N; Claverie M; Voisin R; Poizat C; Lafargue B; Baron O; Laigret F; Kleinhentz M; Arús P; Esmenjaud D
    Theor Appl Genet; 2004 Aug; 109(4):827-38. PubMed ID: 15241595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Integration of Genome-Wide Polymorphic Microsatellite Markers onto a Reference Linkage Map for Constructing a High-Density Genetic Map of Chickpea.
    Khajuria YP; Saxena MS; Gaur R; Chattopadhyay D; Jain M; Parida SK; Bhatia S
    PLoS One; 2015; 10(5):e0125583. PubMed ID: 25974327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations.
    Spindel J; Wright M; Chen C; Cobb J; Gage J; Harrington S; Lorieux M; Ahmadi N; McCouch S
    Theor Appl Genet; 2013 Nov; 126(11):2699-716. PubMed ID: 23918062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linkage maps of the Atlantic salmon (Salmo salar) genome derived from RAD sequencing.
    Gonen S; Lowe NR; Cezard T; Gharbi K; Bishop SC; Houston RD
    BMC Genomics; 2014 Feb; 15():166. PubMed ID: 24571138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus avium).
    Castède S; Campoy JA; Le Dantec L; Quero-García J; Barreneche T; Wenden B; Dirlewanger E
    PLoS One; 2015; 10(11):e0143250. PubMed ID: 26587668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-quality, genome-wide SNP genotypic data for pedigreed germplasm of the diploid outbreeding species apple, peach, and sweet cherry through a common workflow.
    Vanderzande S; Howard NP; Cai L; Da Silva Linge C; Antanaviciute L; Bink MCAM; Kruisselbrink JW; Bassil N; Gasic K; Iezzoni A; Van de Weg E; Peace C
    PLoS One; 2019; 14(6):e0210928. PubMed ID: 31246947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.