These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 26011599)
1. Penalization, bias reduction, and default priors in logistic and related categorical and survival regressions. Greenland S; Mansournia MA Stat Med; 2015 Oct; 34(23):3133-43. PubMed ID: 26011599 [TBL] [Abstract][Full Text] [Related]
2. Penalized maximum likelihood inference under the mixture cure model in sparse data. Xu C; Bull SB Stat Med; 2023 Jun; 42(13):2134-2161. PubMed ID: 36964996 [TBL] [Abstract][Full Text] [Related]
3. Firth's logistic regression with rare events: accurate effect estimates and predictions? Puhr R; Heinze G; Nold M; Lusa L; Geroldinger A Stat Med; 2017 Jun; 36(14):2302-2317. PubMed ID: 28295456 [TBL] [Abstract][Full Text] [Related]
4. On estimation for accelerated failure time models with small or rare event survival data. Alam TF; Rahman MS; Bari W BMC Med Res Methodol; 2022 Jun; 22(1):169. PubMed ID: 35689190 [TBL] [Abstract][Full Text] [Related]
5. Bayesian perspectives for epidemiological research. II. Regression analysis. Greenland S Int J Epidemiol; 2007 Feb; 36(1):195-202. PubMed ID: 17329317 [TBL] [Abstract][Full Text] [Related]
6. Bias in Odds Ratios From Logistic Regression Methods With Sparse Data Sets. Gosho M; Ohigashi T; Nagashima K; Ito Y; Maruo K J Epidemiol; 2023 Jun; 33(6):265-275. PubMed ID: 34565762 [TBL] [Abstract][Full Text] [Related]
7. Bias reduction in conditional logistic regression. Sun JX; Sinha S; Wang S; Maiti T Stat Med; 2011 Feb; 30(4):348-55. PubMed ID: 21225897 [TBL] [Abstract][Full Text] [Related]
8. Bias-reduced and separation-proof conditional logistic regression with small or sparse data sets. Heinze G; Puhr R Stat Med; 2010 Mar; 29(7-8):770-7. PubMed ID: 20213709 [TBL] [Abstract][Full Text] [Related]
9. Hierarchical priors for bias parameters in Bayesian sensitivity analysis for unmeasured confounding. McCandless LC; Gustafson P; Levy AR; Richardson S Stat Med; 2012 Feb; 31(4):383-96. PubMed ID: 22253142 [TBL] [Abstract][Full Text] [Related]
10. Performance of Firth-and logF-type penalized methods in risk prediction for small or sparse binary data. Rahman MS; Sultana M BMC Med Res Methodol; 2017 Feb; 17(1):33. PubMed ID: 28231767 [TBL] [Abstract][Full Text] [Related]
11. Simple Penalties on Maximum-Likelihood Estimates of Genetic Parameters to Reduce Sampling Variation. Meyer K Genetics; 2016 Aug; 203(4):1885-900. PubMed ID: 27317681 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of underlying risk as a source of heterogeneity in meta-analyses: a simulation study of Bayesian and frequentist implementations of three models. Dohoo I; Stryhn H; Sanchez J Prev Vet Med; 2007 Sep; 81(1-3):38-55. PubMed ID: 17477995 [TBL] [Abstract][Full Text] [Related]
16. Bias correction of risk estimates in vaccine safety studies with rare adverse events using a self-controlled case series design. Zeng C; Newcomer SR; Glanz JM; Shoup JA; Daley MF; Hambidge SJ; Xu S Am J Epidemiol; 2013 Dec; 178(12):1750-9. PubMed ID: 24327463 [TBL] [Abstract][Full Text] [Related]
17. [Meta-analysis of the Italian studies on short-term effects of air pollution]. Biggeri A; Bellini P; Terracini B; Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188 [TBL] [Abstract][Full Text] [Related]
19. Data augmentation priors for Bayesian and semi-Bayes analyses of conditional-logistic and proportional-hazards regression. Greenland S; Christensen R Stat Med; 2001 Aug; 20(16):2421-8. PubMed ID: 11512132 [TBL] [Abstract][Full Text] [Related]
20. Bayesian perspectives for epidemiologic research: III. Bias analysis via missing-data methods. Greenland S Int J Epidemiol; 2009 Dec; 38(6):1662-73. PubMed ID: 19744933 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]