These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 26011600)

  • 1. Quantifying strain variability in modeling growth of Listeria monocytogenes.
    Aryani DC; den Besten HM; Hazeleger WC; Zwietering MH
    Int J Food Microbiol; 2015 Sep; 208():19-29. PubMed ID: 26011600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of different matrices on the growth kinetics and heat resistance of Listeria monocytogenes and Lactobacillus plantarum.
    Aryani DC; Zwietering MH; den Besten HM
    Int J Food Microbiol; 2016 Dec; 238():326-337. PubMed ID: 27723494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the effect of lethal and sublethal pH and a(w) stresses on the inactivation or growth of Listeria monocytogenes and Salmonella Typhimurium.
    Tiganitas A; Zeaki N; Gounadaki AS; Drosinos EH; Skandamis PN
    Int J Food Microbiol; 2009 Aug; 134(1-2):104-12. PubMed ID: 19356819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying Variability in Growth and Thermal Inactivation Kinetics of Lactobacillus plantarum.
    Aryani DC; den Besten HM; Zwietering MH
    Appl Environ Microbiol; 2016 Aug; 82(16):4896-908. PubMed ID: 27260362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat and acid tolerance of Listeria monocytogenes after exposure to single and multiple sublethal stresses.
    Skandamis PN; Yoon Y; Stopforth JD; Kendall PA; Sofos JN
    Food Microbiol; 2008 Apr; 25(2):294-303. PubMed ID: 18206772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardinal parameter meta-regression models describing Listeria monocytogenes growth in broth.
    Nunes Silva B; Cadavez V; Teixeira JA; Ellouze M; Gonzales-Barron U
    Food Res Int; 2020 Oct; 136():109476. PubMed ID: 32846559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of pH, water activity and acetic acid concentration on Listeria monocytogenes at 7 degrees C: data collection for the development of a growth/no growth model.
    Vermeulen A; Gysemans KP; Bernaerts K; Geeraerd AH; Van Impe JF; Debevere J; Devlieghere F
    Int J Food Microbiol; 2007 Mar; 114(3):332-41. PubMed ID: 17184866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid and NaCl limits to growth of Listeria monocytogenes and influence of sequence of inimical acid and NaCl levels on inactivation kinetics.
    Shabala L; Lee SH; Cannesson P; Ross T
    J Food Prot; 2008 Jun; 71(6):1169-77. PubMed ID: 18592742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of temperature, pH, sodium chloride and sodium nitrite on the growth of Listeria monocytogenes.
    McClure PJ; Kelly TM; Roberts TA
    Int J Food Microbiol; 1991 Oct; 14(1):77-91. PubMed ID: 1742175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying variability on thermal resistance of Listeria monocytogenes.
    Aryani DC; den Besten HM; Hazeleger WC; Zwietering MH
    Int J Food Microbiol; 2015 Jan; 193():130-8. PubMed ID: 25462932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of different antimicrobials on inhibition of Listeria monocytogenes growth in laboratory medium and on cold-smoked salmon.
    Tang S; Stasiewicz MJ; Wiedmann M; Boor KJ; Bergholz TM
    Int J Food Microbiol; 2013 Aug; 165(3):265-75. PubMed ID: 23803569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting growth of Listeria monocytogenes in fresh ricotta.
    Tirloni E; Stella S; Bernardi C; Dalgaard P; Rosshaug PS
    Food Microbiol; 2019 Apr; 78():123-133. PubMed ID: 30497594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nisin on growth boundaries of Listeria monocytogenes Scott A, at various temperatures, pH and water activities.
    Boziaris IS; Nychas GJ
    Food Microbiol; 2006 Dec; 23(8):779-84. PubMed ID: 16943082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probabilistic models for the prediction of target growth interfaces of Listeria monocytogenes on ham and turkey breast products.
    Yoon Y; Geornaras I; Scanga JA; Belk KE; Smith GC; Kendall PA; Sofos JN
    J Food Sci; 2011 Aug; 76(6):M450-5. PubMed ID: 22417516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of primary predictive models to study the growth of Listeria monocytogenes at low temperatures in liquid cultures and selection of fastest growing ribotypes in meat and turkey product slurries.
    Pal A; Labuza TP; Diez-Gonzalez F
    Food Microbiol; 2008 May; 25(3):460-70. PubMed ID: 18355671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of NaCl and KCl on fate and growth/no growth interfaces of Listeria monocytogenes Scott A at different pH and nisin concentrations.
    Boziaris IS; Skandamis PN; Anastasiadi M; Nychas GJ
    J Appl Microbiol; 2007 Mar; 102(3):796-805. PubMed ID: 17309630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of environmental parameters (temperature, pH and a(w)) on the individual cell lag phase and generation time of Listeria monocytogenes.
    Francois K; Devlieghere F; Standaert AR; Geeraerd AH; Van Impe JF; Debevere J
    Int J Food Microbiol; 2006 May; 108(3):326-35. PubMed ID: 16488043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resuscitation and growth kinetics of sub-lethally injured Listeria monocytogenes strains following fluorescence activated cell sorting (FACS).
    Sibanda T; Buys EM
    Food Res Int; 2017 Oct; 100(Pt 2):150-158. PubMed ID: 28888435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the performance of logistic regression model types on growth/no growth data of Listeria monocytogenes.
    Gysemans KP; Bernaerts K; Vermeulen A; Geeraerd AH; Debevere J; Devlieghere F; Van Impe JF
    Int J Food Microbiol; 2007 Mar; 114(3):316-31. PubMed ID: 17239980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive modeling for growth of non- and cold-adapted Listeria monocytogenes on fresh-cut cantaloupe at different storage temperatures.
    Hong YK; Yoon WB; Huang L; Yuk HG
    J Food Sci; 2014 Jun; 79(6):M1168-74. PubMed ID: 24754226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.