BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 26011629)

  • 1. Enzymatic transformation of ginseng leaf saponin by recombinant β-glucosidase (bgp1) and its efficacy in an adipocyte cell line.
    Huq MA; Siraj FM; Kim YJ; Yang DC
    Biotechnol Appl Biochem; 2016 Jul; 63(4):532-8. PubMed ID: 26011629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate specificity of β-glucosidase from Gordonia terrae for ginsenosides and its application in the production of ginsenosides Rg₃, Rg₂, and Rh₁ from ginseng root extract.
    Shin KC; Lee HJ; Oh DK
    J Biosci Bioeng; 2015 May; 119(5):497-504. PubMed ID: 25457989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of ginsenosides Re and Rg1 into ginsenosides Rg2 and Rh1 by recombinant β-glucosidase.
    Quan LH; Min JW; Sathiyamoorthy S; Yang DU; Kim YJ; Yang DC
    Biotechnol Lett; 2012 May; 34(5):913-7. PubMed ID: 22261865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic biotransformation of ginsenoside Rb1 to 20(S)-Rg3 by recombinant β-glucosidase from Microbacterium esteraromaticum.
    Quan LH; Min JW; Yang DU; Kim YJ; Yang DC
    Appl Microbiol Biotechnol; 2012 Apr; 94(2):377-84. PubMed ID: 22249721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of ginsenosides Rg1 and Rh1 by hydrolyzing the outer glycoside at the C-6 position in protopanaxatriol-type ginsenosides using β-glucosidase from Pyrococcus furiosus.
    Oh HJ; Shin KC; Oh DK
    Biotechnol Lett; 2014 Jan; 36(1):113-9. PubMed ID: 24078126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adjuvant effects of protopanaxadiol and protopanaxatriol saponins from ginseng roots on the immune responses to ovalbumin in mice.
    Sun J; Hu S; Song X
    Vaccine; 2007 Jan; 25(6):1114-20. PubMed ID: 17069940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of Ginsenoside Profiles Produced by Various Processing Technologies.
    Piao XM; Huo Y; Kang JP; Mathiyalagan R; Zhang H; Yang DU; Kim M; Yang DC; Kang SC; Wang YP
    Molecules; 2020 Sep; 25(19):. PubMed ID: 32987784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saponins composition in American ginseng leaf and berry assayed by high-performance liquid chromatography.
    Wang CZ; Wu JA; McEntee E; Yuan CS
    J Agric Food Chem; 2006 Mar; 54(6):2261-6. PubMed ID: 16536605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of in vitro-digested ginsenosides on lipid accumulation in 3T3-L1 adipocytes.
    Kim SN; Lee JH; Shin H; Son SH; Kim YS
    Planta Med; 2009 May; 75(6):596-601. PubMed ID: 19204893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete Biotransformation of Protopanaxatriol-Type Ginsenosides in
    Yang EJ; Shin KC; Lee DY; Oh DK
    J Microbiol Biotechnol; 2018 Feb; 28(2):255-261. PubMed ID: 29169217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic transformation of ginsenosides Re, Rg1, and Rf to ginsenosides Rg2 and aglycon PPT by using β-glucosidase from Thermotoga neapolitana.
    Bi YF; Wang XZ; Jiang S; Liu JS; Zheng MZ; Chen P
    Biotechnol Lett; 2019 May; 41(4-5):613-623. PubMed ID: 30968346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms.
    Chi H; Ji GE
    Biotechnol Lett; 2005 Jun; 27(11):765-71. PubMed ID: 16086257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect.
    Bae EA; Shin JE; Kim DH
    Biol Pharm Bull; 2005 Oct; 28(10):1903-8. PubMed ID: 16204943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantified ginseng (Panax ginseng C.A. Meyer) extract influences lipid acquisition and increases adiponectin expression in 3T3-L1 cells.
    Yeo CR; Yang C; Wong TY; Popovich DG
    Molecules; 2011 Jan; 16(1):477-92. PubMed ID: 21221064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the pharmacological effects of Panax ginseng and Panax quinquefolium.
    Chen CF; Chiou WF; Zhang JT
    Acta Pharmacol Sin; 2008 Sep; 29(9):1103-8. PubMed ID: 18718179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by Microbacterium sp. GS514.
    Cheng LQ; Na JR; Bang MH; Kim MK; Yang DC
    Phytochemistry; 2008 Jan; 69(1):218-24. PubMed ID: 17764709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fermentation of protopanaxadiol type ginsenosides (PD) with probiotic Bifidobacterium lactis and Lactobacillus rhamnosus.
    Tan JS; Yeo CR; Popovich DG
    Appl Microbiol Biotechnol; 2017 Jul; 101(13):5427-5437. PubMed ID: 28478490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotransformation of ginsenoside Rd in the ginseng extraction residue by fermentation with lingzhi (Ganoderma lucidum).
    Hsu BY; Lu TJ; Chen CH; Wang SJ; Hwang LS
    Food Chem; 2013 Dec; 141(4):4186-93. PubMed ID: 23993604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of
    Dong WW; Zhao J; Zhong FL; Zhu WJ; Jiang J; Wu S; Yang DC; Li D; Quan LH
    J Ginseng Res; 2017 Oct; 41(4):540-547. PubMed ID: 29021702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro study of the relationship between the structure of ginsenoside and its antioxidative or prooxidative activity in free radical induced hemolysis of human erythrocytes.
    Liu ZQ; Luo XY; Liu GZ; Chen YP; Wang ZC; Sun YX
    J Agric Food Chem; 2003 Apr; 51(9):2555-8. PubMed ID: 12696936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.