BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 26011693)

  • 1. Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor.
    Zhang H; Xiao R; Nie J; Jin B; Shao S; Xiao G
    Bioresour Technol; 2015 Sep; 192():68-74. PubMed ID: 26011693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-pyrolysis of lignin and plastics using red clay as catalyst in a micro-pyrolyzer.
    Patil V; Adhikari S; Cross P
    Bioresour Technol; 2018 Dec; 270():311-319. PubMed ID: 30241064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on thermal co-pyrolysis of jatropha deoiled cake and polyolefins.
    Rotliwala YC; Parikh PA
    Waste Manag Res; 2011 Dec; 29(12):1251-61. PubMed ID: 21628346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis of virgin and waste polypropylene and its mixtures with waste polyethylene and polystyrene.
    Kiran Ciliz N; Ekinci E; Snape CE
    Waste Manag; 2004; 24(2):173-81. PubMed ID: 14761756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic fast pyrolysis of straw biomass in an internally interconnected fluidized bed to produce aromatics and olefins: effect of different catalysts.
    Zhang H; Xiao R; Jin B; Shen D; Chen R; Xiao G
    Bioresour Technol; 2013 Jun; 137():82-7. PubMed ID: 23587812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    J Environ Manage; 2019 Jun; 239():395-406. PubMed ID: 30928634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolysis of polyolefins for increasing the yield of monomers' recovery.
    Donaj PJ; Kaminsky W; Buzeto F; Yang W
    Waste Manag; 2012 May; 32(5):840-6. PubMed ID: 22093704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.
    Adrados A; de Marco I; Caballero BM; López A; Laresgoiti MF; Torres A
    Waste Manag; 2012 May; 32(5):826-32. PubMed ID: 21795037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on synergistic pyrolysis and kinetics of mixed plastics based on spent fluid-catalytic-cracking catalyst.
    Wang K; Bian H; Lai Q; Chen Y; Li Z; Hao Y; Yan L; Wang C; Tian X
    Environ Sci Pollut Res Int; 2023 May; 30(25):66665-66682. PubMed ID: 37099103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating.
    Duan D; Wang Y; Dai L; Ruan R; Zhao Y; Fan L; Tayier M; Liu Y
    Bioresour Technol; 2017 Oct; 241():207-213. PubMed ID: 28570885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality.
    Fan L; Chen P; Zhang Y; Liu S; Liu Y; Wang Y; Dai L; Ruan R
    Bioresour Technol; 2017 Feb; 225():199-205. PubMed ID: 27894038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalyst-mediated pyrolysis of waste plastics: tuning yield, composition, and nature of pyrolysis oil.
    Kanattukara BV; Singh G; Sarkar P; Chopra A; Singh D; Mondal S; Kapur GS; Ramakumar SSV
    Environ Sci Pollut Res Int; 2023 May; 30(24):64994-65010. PubMed ID: 37074603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological characteristics of waste polyethylene/polypropylene plastics during pyrolysis and representative morphological signal characterizing pyrolysis stages.
    Wang H; Chen D; Yuan G; Ma X; Dai X
    Waste Manag; 2013 Feb; 33(2):327-39. PubMed ID: 23177018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals.
    Saeaung K; Phusunti N; Phetwarotai W; Assabumrungrat S; Cheirsilp B
    Waste Manag; 2021 May; 127():101-111. PubMed ID: 33932851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.
    Li D; Briens C; Berruti F
    Bioresour Technol; 2015; 189():7-14. PubMed ID: 25863324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances.
    Narobe M; Golob J; Klinar D; Francetič V; Likozar B
    Bioresour Technol; 2014 Jun; 162():21-9. PubMed ID: 24736208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-assisted co-pyrolysis of lignin and waste oil catalyzed by hierarchical ZSM-5/MCM-41 catalyst to produce aromatic hydrocarbons.
    Zou R; Wang Y; Jiang L; Yu Z; Zhao Y; Wu Q; Dai L; Ke L; Liu Y; Ruan R
    Bioresour Technol; 2019 Oct; 289():121609. PubMed ID: 31212171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel.
    Das P; Tiwari P
    Waste Manag; 2018 Sep; 79():615-624. PubMed ID: 30343794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of an upgraded lignin-derived bio-oil using the clay catalysts of bentonite and olivine and the spent FCC in a bench-scale fixed bed pyrolyzer.
    Ro D; Shafaghat H; Jang SH; Lee HW; Jung SC; Jae J; Cha JS; Park YK
    Environ Res; 2019 May; 172():658-664. PubMed ID: 30878737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts.
    Miandad R; Barakat MA; Rehan M; Aburiazaiza AS; Ismail IMI; Nizami AS
    Waste Manag; 2017 Nov; 69():66-78. PubMed ID: 28882427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.