These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 26011713)

  • 1. In-frame amber stop codon replacement mutagenesis for the directed evolution of proteins containing non-canonical amino acids: identification of residues open to bio-orthogonal modification.
    Arpino JA; Baldwin AJ; McGarrity AR; Tippmann EM; Jones DD
    PLoS One; 2015; 10(5):e0127504. PubMed ID: 26011713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome.
    Neumann H; Wang K; Davis L; Garcia-Alai M; Chin JW
    Nature; 2010 Mar; 464(7287):441-4. PubMed ID: 20154731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolving Bacterial Fitness with an Expanded Genetic Code.
    Tack DS; Cole AC; Shroff R; Morrow BR; Ellington AD
    Sci Rep; 2018 Feb; 8(1):3288. PubMed ID: 29459649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response and adaptation of Escherichia coli to suppression of the amber stop codon.
    Wang Q; Sun T; Xu J; Shen Z; Briggs SP; Zhou D; Wang L
    Chembiochem; 2014 Aug; 15(12):1744-9. PubMed ID: 25044429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoupling Protein Production from Cell Growth Enhances the Site-Specific Incorporation of Noncanonical Amino Acids in
    Galindo Casas M; Stargardt P; Mairhofer J; Wiltschi B
    ACS Synth Biol; 2020 Nov; 9(11):3052-3066. PubMed ID: 33150786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
    Wang L
    Acc Chem Res; 2017 Nov; 50(11):2767-2775. PubMed ID: 28984438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining Sense and Nonsense Codon Reassignment for Site-Selective Protein Modification with Unnatural Amino Acids.
    Cui Z; Mureev S; Polinkovsky ME; Tnimov Z; Guo Z; Durek T; Jones A; Alexandrov K
    ACS Synth Biol; 2017 Mar; 6(3):535-544. PubMed ID: 27966891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive screening of amber suppressor tRNAs suitable for incorporation of non-natural amino acids in a cell-free translation system.
    Taira H; Matsushita Y; Kojima K; Shiraga K; Hohsaka T
    Biochem Biophys Res Commun; 2008 Sep; 374(2):304-8. PubMed ID: 18634752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Labeling proteins on live mammalian cells using click chemistry.
    Nikić I; Kang JH; Girona GE; Aramburu IV; Lemke EA
    Nat Protoc; 2015 May; 10(5):780-91. PubMed ID: 25906116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in genetic code engineering in Escherichia coli.
    Hoesl MG; Budisa N
    Curr Opin Biotechnol; 2012 Oct; 23(5):751-7. PubMed ID: 22237016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic-code evolution for protein synthesis with non-natural amino acids.
    Mukai T; Yanagisawa T; Ohtake K; Wakamori M; Adachi J; Hino N; Sato A; Kobayashi T; Hayashi A; Shirouzu M; Umehara T; Yokoyama S; Sakamoto K
    Biochem Biophys Res Commun; 2011 Aug; 411(4):757-61. PubMed ID: 21782790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amber codon-mediated expanded saturation mutagenesis of proteins using a cell-free translation system.
    Shozen N; Watanabe T; Hohsaka T
    J Biosci Bioeng; 2012 Jun; 113(6):704-9. PubMed ID: 22365415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residue-Specific Incorporation of Noncanonical Amino Acids for Protein Engineering.
    van Eldijk MB; van Hest JCM
    Methods Mol Biol; 2018; 1728():137-145. PubMed ID: 29404995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental challenges of sense codon reassignment: an innovative approach to genetic code expansion.
    Krishnakumar R; Ling J
    FEBS Lett; 2014 Jan; 588(3):383-8. PubMed ID: 24333334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation.
    Hong SH; Ntai I; Haimovich AD; Kelleher NL; Isaacs FJ; Jewett MC
    ACS Synth Biol; 2014 Jun; 3(6):398-409. PubMed ID: 24328168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Amber and Ochre Nonsense Codons to Code Two Different Noncanonical Amino Acids in One Protein Gene.
    Tharp JM; Liu WR
    Methods Mol Biol; 2018; 1728():147-154. PubMed ID: 29404996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanded Genetic Codes Create New Mutational Routes to Rifampicin Resistance in Escherichia coli.
    Hammerling MJ; Gollihar J; Mortensen C; Alnahhas RN; Ellington AD; Barrick JE
    Mol Biol Evol; 2016 Aug; 33(8):2054-63. PubMed ID: 27189550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadening the Toolkit for Quantitatively Evaluating Noncanonical Amino Acid Incorporation in Yeast.
    Stieglitz JT; Potts KA; Van Deventer JA
    ACS Synth Biol; 2021 Nov; 10(11):3094-3104. PubMed ID: 34730946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chemical toolkit for proteins--an expanded genetic code.
    Xie J; Schultz PG
    Nat Rev Mol Cell Biol; 2006 Oct; 7(10):775-82. PubMed ID: 16926858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous and site-directed incorporation of an ester linkage and an azide group into a polypeptide by in vitro translation.
    Humenik M; Huang Y; Safronov I; Sprinzl M
    Org Biomol Chem; 2009 Oct; 7(20):4218-24. PubMed ID: 19795060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.