BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26011879)

  • 41. Minimum detectable spinal cord atrophy with automatic segmentation: Investigations using an open-access dataset of healthy participants.
    Bautin P; Cohen-Adad J
    Neuroimage Clin; 2021; 32():102849. PubMed ID: 34624638
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Derivation of high-resolution MRI atlases of the human cerebellum at 3T and segmentation using multiple automatically generated templates.
    Park MT; Pipitone J; Baer LH; Winterburn JL; Shah Y; Chavez S; Schira MM; Lobaugh NJ; Lerch JP; Voineskos AN; Chakravarty MM
    Neuroimage; 2014 Jul; 95():217-31. PubMed ID: 24657354
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Longitudinal Automatic Segmentation of Hippocampal Subfields (LASHiS) using multi-contrast MRI.
    Shaw T; York A; Ziaei M; Barth M; Bollmann S;
    Neuroimage; 2020 Sep; 218():116798. PubMed ID: 32311467
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI.
    Cohen-Adad J; El Mendili MM; Lehéricy S; Pradat PF; Blancho S; Rossignol S; Benali H
    Neuroimage; 2011 Apr; 55(3):1024-33. PubMed ID: 21232610
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Automatic segmentation of the ribs, the vertebral column, and the spinal canal in pediatric computed tomographic images.
    Banik S; Rangayyan RM; Boag GS
    J Digit Imaging; 2010 Jun; 23(3):301-22. PubMed ID: 19219504
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An Optimized PatchMatch for multi-scale and multi-feature label fusion.
    Giraud R; Ta VT; Papadakis N; Manjón JV; Collins DL; Coupé P;
    Neuroimage; 2016 Jan; 124(Pt A):770-782. PubMed ID: 26244277
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computer-Aided Assessment of Spinal Inflammation on Magnetic Resonance Images in Patients With Spondyloarthritis.
    Griffith JF; Wang D; Shi L; Yeung DK; Lee R; Shan TL
    Arthritis Rheumatol; 2015 Jul; 67(7):1789-97. PubMed ID: 25808981
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single, slice-specific z-shim gradient pulses improve T2*-weighted imaging of the spinal cord.
    Finsterbusch J; Eippert F; Büchel C
    Neuroimage; 2012 Feb; 59(3):2307-15. PubMed ID: 21979381
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multifeature landmark-free active appearance models: application to prostate MRI segmentation.
    Toth R; Madabhushi A
    IEEE Trans Med Imaging; 2012 Aug; 31(8):1638-50. PubMed ID: 22665505
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automated boundary extraction of the spinal canal in MRI based on dynamic programming.
    Koh J; Chaudhary V; Dhillon G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6559-62. PubMed ID: 23367432
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of manual and semi-automated segmentation methods to evaluate hippocampus volume in APP and PS1 transgenic mice obtained via in vivo magnetic resonance imaging.
    Hayes K; Buist R; Vincent TJ; Thiessen JD; Zhang Y; Zhang H; Wang J; Summers AR; Kong J; Li XM; Martin M
    J Neurosci Methods; 2014 Jan; 221():103-11. PubMed ID: 24091139
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spine-GFlow: A hybrid learning framework for robust multi-tissue segmentation in lumbar MRI without manual annotation.
    Kuang X; Cheung JPY; Wong KK; Lam WY; Lam CH; Choy RW; Cheng CP; Wu H; Yang C; Wang K; Li Y; Zhang T
    Comput Med Imaging Graph; 2022 Jul; 99():102091. PubMed ID: 35803034
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Magnetic resonance T2 image signal intensity ratio and clinical manifestation predict prognosis after surgical intervention for cervical spondylotic myelopathy.
    Zhang YZ; Shen Y; Wang LF; Ding WY; Xu JX; He J
    Spine (Phila Pa 1976); 2010 May; 35(10):E396-9. PubMed ID: 20393392
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Supervised methods for detection and segmentation of tissues in clinical lumbar MRI.
    Ghosh S; Chaudhary V
    Comput Med Imaging Graph; 2014 Oct; 38(7):639-49. PubMed ID: 24746606
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automatic segmentation and quantitative analysis of white matter hyperintensities on FLAIR images using trimmed-likelihood estimator.
    Wang R; Li C; Wang J; Wei X; Li Y; Hui C; Zhu Y; Zhang S
    Acad Radiol; 2014 Dec; 21(12):1512-23. PubMed ID: 25176451
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Short-scan-time multi-slice diffusion MRI of the mouse cervical spinal cord using echo planar imaging.
    Callot V; Duhamel G; Cozzone PJ; Kober F
    NMR Biomed; 2008 Oct; 21(8):868-77. PubMed ID: 18574855
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cardiac segmentation by a velocity-aided active contour model.
    Cho J; Benkeser PJ
    Comput Med Imaging Graph; 2006 Jan; 30(1):31-41. PubMed ID: 16378714
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of manual and automatic segmentation of the mouse heart from CINE MR images.
    Heijman E; Aben JP; Penners C; Niessen P; Guillaume R; van Eys G; Nicolay K; Strijkers GJ
    J Magn Reson Imaging; 2008 Jan; 27(1):86-93. PubMed ID: 18050352
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improved labeling of subcortical brain structures in atlas-based segmentation of magnetic resonance images.
    Yousefi S; Kehtarnavaz N; Gholipour A
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):1808-17. PubMed ID: 21382762
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automatic labeling of vertebral levels using a robust template-based approach.
    Ullmann E; Pelletier Paquette JF; Thong WE; Cohen-Adad J
    Int J Biomed Imaging; 2014; 2014():719520. PubMed ID: 25132843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.