BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 26012376)

  • 1. Luminescence-Functionalized Metal-Organic Frameworks Based on a Ruthenium(II) Complex: A Signal Amplification Strategy for Electrogenerated Chemiluminescence Immunosensors.
    Xiong CY; Wang HJ; Liang WB; Yuan YL; Yuan R; Chai YQ
    Chemistry; 2015 Jun; 21(27):9825-32. PubMed ID: 26012376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Stable Mesoporous Luminescence-Functionalized MOF with Excellent Electrochemiluminescence Property for Ultrasensitive Immunosensor Construction.
    Hu GB; Xiong CY; Liang WB; Zeng XS; Xu HL; Yang Y; Yao LY; Yuan R; Xiao DR
    ACS Appl Mater Interfaces; 2018 May; 10(18):15913-15919. PubMed ID: 29676561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive electrochemiluminescent detection of cardiac troponin I based on a self-enhanced Ru(II) complex.
    Zhou Y; Zhuo Y; Liao N; Chai Y; Yuan R
    Talanta; 2014 Nov; 129():219-26. PubMed ID: 25127587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A self-enhanced electrochemiluminescence immunosensor based on L-Lys-Ru(dcbpy)3(2+) functionalized porous six arrises column nanorods for detection of CA15-3.
    Zhang L; He Y; Wang H; Yuan Y; Yuan R; Chai Y
    Biosens Bioelectron; 2015 Dec; 74():924-30. PubMed ID: 26257184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive Immunosensor for Cardiac Troponin I Detection Based on the Electrochemiluminescence of 2D Ru-MOF Nanosheets.
    Yan M; Ye J; Zhu Q; Zhu L; Huang J; Yang X
    Anal Chem; 2019 Aug; 91(15):10156-10163. PubMed ID: 31283192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection.
    Xu S; Liu Y; Wang T; Li J
    Anal Chem; 2011 May; 83(10):3817-23. PubMed ID: 21513282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A supersandwich electrochemiluminescence immunosensor based on mimic-intramolecular interaction for sensitive detection of proteins.
    He Y; Chai Y; Yuan R; Wang H; Bai L; Liao N
    Analyst; 2014 Oct; 139(20):5209-14. PubMed ID: 25122008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal-Off Electrogenerated Chemiluminescence Biosensing Platform Based on the Quenching Effect between Ferrocene and Ru(bpy)
    Bai W; Cui A; Liu M; Qiao X; Li Y; Wang T
    Anal Chem; 2019 Sep; 91(18):11840-11847. PubMed ID: 31414596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-Quenching Electrochemiluminescence Strategy Based on Three-Dimensional Metal-Organic Frameworks for Ultrasensitive Detection of Amyloid-β.
    Zhao G; Wang Y; Li X; Yue Q; Dong X; Du B; Cao W; Wei Q
    Anal Chem; 2019 Feb; 91(3):1989-1996. PubMed ID: 30644721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced electrogenerated chemiluminescence of tris(2,2'-bipyridyl)ruthenium(II) system by l-cysteine-capped CdTe quantum dots and its application for the determination of nitrofuran antibiotics.
    Taokaenchan N; Tangkuaram T; Pookmanee P; Phaisansuthichol S; Kuimalee S; Satienperakul S
    Biosens Bioelectron; 2015 Apr; 66():231-7. PubMed ID: 25437357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ternary electrochemiluminescence quenching effects of CuFe
    Ren X; Xie Z; Wang H; Wang L; Gao Z; Ma H; Zhang N; Fan D; Wei Q; Ju H
    Anal Chim Acta; 2024 Jan; 1287():342091. PubMed ID: 38182343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-Ruthenium(II) complex composites for sensitive ECL immunosensors.
    Xiao FN; Wang M; Wang FB; Xia XH
    Small; 2014 Feb; 10(4):706-16. PubMed ID: 23926125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Superstable Luminescent Lanthanide Metal Organic Gel Utilized in an Electrochemiluminescence Sensor for Epinephrine Detection with a Narrow Potential Sweep Range.
    Wang C; Han Q; Liu P; Zhang G; Song L; Zou X; Fu Y
    ACS Sens; 2021 Jan; 6(1):252-258. PubMed ID: 33395257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly sensitive self-enhanced aptasensor based on a stable ultrathin 2D metal-organic layer with outstanding electrochemiluminescence property.
    Yang Y; Hu GB; Liang WB; Yao LY; Huang W; Yuan R; Xiao DR
    Nanoscale; 2019 May; 11(20):10056-10063. PubMed ID: 31089604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulating highly photoelectrochemical activity of Zr-based mixed-linker metal-organic frameworks toward sensitive electrogenerated chemiluminescence sensing of α-glucosidase.
    Shao M; Sun Y; Li Y; Wu Z; Li X; Zhang R; Zhang L
    Biosens Bioelectron; 2023 Oct; 237():115530. PubMed ID: 37478507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemiluminescence immunoassay strategies based on a hexagonal Ru-MOF and MoS
    Ma G; Peng L; Zhang S; Wu K; Deng A; Li J
    Analyst; 2023 Apr; 148(8):1694-1702. PubMed ID: 36916172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ruthenium(II) Complex-Grafted Hollow Hierarchical Metal-Organic Frameworks with Superior Electrochemiluminescence Performance for Sensitive Assay of Thrombin.
    Huang W; Hu GB; Liang WB; Wang JM; Lu ML; Yuan R; Xiao DR
    Anal Chem; 2021 Apr; 93(15):6239-6245. PubMed ID: 33822576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bifunctional reagent regulated ratiometric electrochemiluminescence biosensor constructed on surfactant-assisted synthesis of TiO
    Zheng H; Ke Y; Yi H; Dai H; Fang D; Lin Y; Hong Z; Li X
    Talanta; 2019 May; 196():600-607. PubMed ID: 30683411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Step Fabrication of Highly Sensitive Tris(2,2'-bipyridyl)ruthenium(II) Electrogenerated Chemiluminescence Sensor Based on Graphene-Titania-Nafion Composite Film.
    Lee SJ; Lee DH; Lee WY
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Efficient Electrochemiluminescence Resonance Energy Transfer System in One Nanostructure: Its Application for Ultrasensitive Detection of MicroRNA in Cancer Cells.
    Li Z; Lin Z; Wu X; Chen H; Chai Y; Yuan R
    Anal Chem; 2017 Jun; 89(11):6029-6035. PubMed ID: 28488439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.