BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26013033)

  • 1. A base-independent repair mechanism for DNA glycosylase--no discrimination within the active site.
    Blank ID; Sadeghian K; Ochsenfeld C
    Sci Rep; 2015 May; 5():10369. PubMed ID: 26013033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the Base Excision Repair Mechanism of Human DNA Glycosylase.
    Sadeghian K; Ochsenfeld C
    J Am Chem Soc; 2015 Aug; 137(31):9824-31. PubMed ID: 26226322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base-Independent DNA Base-Excision Repair of 8-Oxoguanine.
    Kreppel A; Blank ID; Ochsenfeld C
    J Am Chem Soc; 2018 Apr; 140(13):4522-4526. PubMed ID: 29578340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribose-protonated DNA base excision repair: a combined theoretical and experimental study.
    Sadeghian K; Flaig D; Blank ID; Schneider S; Strasser R; Stathis D; Winnacker M; Carell T; Ochsenfeld C
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10044-8. PubMed ID: 25065673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QM/MM Study of the Reaction Catalyzed by Alkyladenine DNA Glycosylase: Examination of the Substrate Specificity of a DNA Repair Enzyme.
    Lenz SAP; Wetmore SD
    J Phys Chem B; 2017 Dec; 121(49):11096-11108. PubMed ID: 29148771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for the recognition of the FapydG lesion (2,6-diamino-4-hydroxy-5-formamidopyrimidine) by formamidopyrimidine-DNA glycosylase.
    Coste F; Ober M; Carell T; Boiteux S; Zelwer C; Castaing B
    J Biol Chem; 2004 Oct; 279(42):44074-83. PubMed ID: 15249553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate discrimination by formamidopyrimidine-DNA glycosylase: distinguishing interactions within the active site.
    Perlow-Poehnelt RA; Zharkov DO; Grollman AP; Broyde S
    Biochemistry; 2004 Dec; 43(51):16092-105. PubMed ID: 15610004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse NEIL1 protein is specific for excision of 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 4,6-diamino-5-formamidopyrimidine from oxidatively damaged DNA.
    Jaruga P; Birincioglu M; Rosenquist TA; Dizdaroglu M
    Biochemistry; 2004 Dec; 43(50):15909-14. PubMed ID: 15595846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA repair enzymes.
    Evans TC; Nichols NM
    Curr Protoc Mol Biol; 2008 Oct; Chapter 3():Unit3.9. PubMed ID: 18972391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lesion specificity in the base excision repair enzyme hNeil1: modeling and dynamics studies.
    Jia L; Shafirovich V; Geacintov NE; Broyde S
    Biochemistry; 2007 May; 46(18):5305-14. PubMed ID: 17432829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum mechanical study of the β- and δ-lyase reactions during the base excision repair process: application to FPG.
    Sowlati-Hashjin S; Wetmore SD
    Phys Chem Chem Phys; 2015 Oct; 17(38):24696-706. PubMed ID: 26352486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair.
    Zhu C; Lu L; Zhang J; Yue Z; Song J; Zong S; Liu M; Stovicek O; Gao YQ; Yi C
    Proc Natl Acad Sci U S A; 2016 Jul; 113(28):7792-7. PubMed ID: 27354518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Base-excision repair of oxidative DNA damage by DNA glycosylases.
    Dizdaroglu M
    Mutat Res; 2005 Dec; 591(1-2):45-59. PubMed ID: 16054172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum.
    Lingaraju GM; Prota AE; Winkler FK
    DNA Repair (Amst); 2009 Jul; 8(7):857-64. PubMed ID: 19410520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Destabilization of DNA duplexes by oxidative damage at guanine: implications for lesion recognition and repair.
    Jiranusornkul S; Laughton CA
    J R Soc Interface; 2008 Dec; 5 Suppl 3(Suppl 3):S191-8. PubMed ID: 18782724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular simulations reveal a common binding mode for glycosylase binding of oxidatively damaged DNA lesions.
    Song K; Kelso C; de los Santos C; Grollman AP; Simmerling C
    J Am Chem Soc; 2007 Nov; 129(47):14536-7. PubMed ID: 17988127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combinatorial role for MutY and Fpg DNA glycosylases in mutation avoidance in Mycobacterium smegmatis.
    Hassim F; Papadopoulos AO; Kana BD; Gordhan BG
    Mutat Res; 2015 Sep; 779():24-32. PubMed ID: 26125998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excision of the oxidatively formed 5-hydroxyhydantoin and 5-hydroxy-5-methylhydantoin pyrimidine lesions by Escherichia coli and Saccharomyces cerevisiae DNA N-glycosylases.
    Gasparutto D; Muller E; Boiteux S; Cadet J
    Biochim Biophys Acta; 2009 Jan; 1790(1):16-24. PubMed ID: 18983898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA.
    Banerjee A; Yang W; Karplus M; Verdine GL
    Nature; 2005 Mar; 434(7033):612-8. PubMed ID: 15800616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational clues for a new mechanism in the glycosylase activity of the human DNA repair protein hOGG1. A generalized paradigm for purine-repairing systems?
    Calvaresi M; Bottoni A; Garavelli M
    J Phys Chem B; 2007 Jun; 111(23):6557-70. PubMed ID: 17508740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.