These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 26013176)

  • 21. Structure and mechanistic implications of a tryptophan synthase quinonoid intermediate.
    Barends TR; Domratcheva T; Kulik V; Blumenstein L; Niks D; Dunn MF; Schlichting I
    Chembiochem; 2008 May; 9(7):1024-8. PubMed ID: 18351684
    [No Abstract]   [Full Text] [Related]  

  • 22. The tryptophan synthase α2β2 complex: a model for substrate channeling, allosteric communication, and pyridoxal phosphate catalysis.
    Miles EW
    J Biol Chem; 2013 Apr; 288(14):10084-10091. PubMed ID: 23426371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasticity of the tryptophan synthase active site probed by 31P NMR spectroscopy.
    Schnackerz KD; Mozzarelli A
    J Biol Chem; 1998 Dec; 273(50):33247-53. PubMed ID: 9837895
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coupling of functional hydrogen bonds in pyridoxal-5'-phosphate-enzyme model systems observed by solid-state NMR spectroscopy.
    Sharif S; Schagen D; Toney MD; Limbach HH
    J Am Chem Soc; 2007 Apr; 129(14):4440-55. PubMed ID: 17371021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystallographic Snapshots of the Dunathan and Quinonoid Intermediates provide Insights into the Reaction Mechanism of Group II Decarboxylases.
    Gayathri SC; Manoj N
    J Mol Biol; 2020 Dec; 432(24):166692. PubMed ID: 33122004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular basis of E. coli L-threonine aldolase catalytic inactivation at low pH.
    Remesh SG; Ghatge MS; Ahmed MH; Musayev FN; Gandhi A; Chowdhury N; di Salvo ML; Kellogg GE; Contestabile R; Schirch V; Safo MK
    Biochim Biophys Acta; 2015 Apr; 1854(4):278-83. PubMed ID: 25560296
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BetaQ114N and betaT110V mutations reveal a critically important role of the substrate alpha-carboxylate site in the reaction specificity of tryptophan synthase.
    Blumenstein L; Domratcheva T; Niks D; Ngo H; Seidel R; Dunn MF; Schlichting I
    Biochemistry; 2007 Dec; 46(49):14100-16. PubMed ID: 18004874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of Structural Dynamics of Enzymes and Protonation States of Substrates Using Computational Tools.
    Chang CA; Huang YM; Mueller LJ; You W
    Catalysts; 2016 Jun; 6(6):. PubMed ID: 27885336
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMR crystallography of enzyme active sites: probing chemically detailed, three-dimensional structure in tryptophan synthase.
    Mueller LJ; Dunn MF
    Acc Chem Res; 2013 Sep; 46(9):2008-17. PubMed ID: 23537227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism-Based Trapping of the Quinonoid Intermediate by Using the K276R Mutant of PLP-Dependent 3-Aminobenzoate Synthase PctV in the Biosynthesis of Pactamycin.
    Hirayama A; Miyanaga A; Kudo F; Eguchi T
    Chembiochem; 2015 Nov; 16(17):2484-90. PubMed ID: 26426567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum mechanics/molecular mechanics studies on the mechanism of action of cofactor pyridoxal 5'-phosphate in ornithine 4,5-aminomutase.
    Pang J; Scrutton NS; Sutcliffe MJ
    Chemistry; 2014 Sep; 20(36):11390-401. PubMed ID: 25048616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of the pyridine nitrogen in pyridoxal 5'-phosphate catalysis: activity of three classes of PLP enzymes reconstituted with deazapyridoxal 5'-phosphate.
    Griswold WR; Toney MD
    J Am Chem Soc; 2011 Sep; 133(37):14823-30. PubMed ID: 21827189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the role of alphaThr183 in the allosteric regulation and catalytic mechanism of tryptophan synthase.
    Kulik V; Weyand M; Seidel R; Niks D; Arac D; Dunn MF; Schlichting I
    J Mol Biol; 2002 Dec; 324(4):677-90. PubMed ID: 12460570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free energy landscapes of prototropic tautomerism in pyridoxal 5'-phosphate schiff bases at the active site of an enzyme in aqueous medium.
    Soniya K; Chandra A
    J Comput Chem; 2018 Aug; 39(21):1629-1638. PubMed ID: 29756317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutation of an active site residue of tryptophan synthase (beta-serine 377) alters cofactor chemistry.
    Jhee KH; Yang LH; Ahmed SA; McPhie P; Rowlett R; Miles EW
    J Biol Chem; 1998 May; 273(19):11417-22. PubMed ID: 9565551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tryptophan synthase: a mine for enzymologists.
    Raboni S; Bettati S; Mozzarelli A
    Cell Mol Life Sci; 2009 Jul; 66(14):2391-403. PubMed ID: 19387555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural Basis of the Stereochemistry of Inhibition of Tryptophan Synthase by Tryptophan and Derivatives.
    Phillips RS; Harris AP
    Biochemistry; 2021 Jan; 60(3):231-244. PubMed ID: 33428374
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of monovalent cation action in enzyme catalysis: the first stage of the tryptophan synthase beta-reaction.
    Woehl E; Dunn MF
    Biochemistry; 1999 Jun; 38(22):7118-30. PubMed ID: 10353822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Allosteric regulation of substrate channeling and catalysis in the tryptophan synthase bienzyme complex.
    Dunn MF
    Arch Biochem Biophys; 2012 Mar; 519(2):154-66. PubMed ID: 22310642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergistic regulation and ligand-induced conformational changes of tryptophan synthase.
    Fatmi MQ; Ai R; Chang CE
    Biochemistry; 2009 Oct; 48(41):9921-31. PubMed ID: 19764814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.