These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 2601349)

  • 1. Bioelectrorheological model of the cell. 1. Analysis of stresses and deformations.
    Pawlowski P; Fikus M
    J Theor Biol; 1989 Apr; 137(3):321-37. PubMed ID: 2601349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioelectrorheological model of the cell. 2. Analysis of creep and its experimental verification.
    Fikus M; Pawlowski P
    J Theor Biol; 1989 Apr; 137(4):365-73. PubMed ID: 2533955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioelectrorheological model of the cell. 3. Viscoelastic shear deformation of the membrane.
    Poznański J; Pawłowski P; Fikus M
    Biophys J; 1992 Mar; 61(3):612-20. PubMed ID: 1387010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioelectrorheological model of the cell. 5. Electrodestruction of cellular membrane in alternating electric field.
    Pawłowski P; Szutowicz I; Marszałek P; Fikus M
    Biophys J; 1993 Jul; 65(1):541-9. PubMed ID: 8369458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioelectrorheological model of the cell. 7. Cellular deformation in the presence of cytochalasin B.
    Pawlowski P; Poznanska A; Fikus M
    Biorheology; 1997; 34(3):171-93. PubMed ID: 9474262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioelectrorheological model of the cell. 4. Analysis of the extensil deformation of cellular membrane in alternating electric field.
    Pawłowski P; Fikus M
    Biophys J; 1993 Jul; 65(1):535-40. PubMed ID: 8369457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element analysis of microelectrotension of cell membranes.
    Bae C; Butler PJ
    Biomech Model Mechanobiol; 2008 Oct; 7(5):379-86. PubMed ID: 17657517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioelectrorheological model of the cell. 8. Cellular deformation under prolonged and recurrent shear stress.
    Pawłowski P; Fikus M
    Biorheology; 1998; 35(4-5):311-24. PubMed ID: 10474657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential distribution for a spheroidal cell having a conductive membrane in an electric field.
    Jerry RA; Popel AS; Brownell WE
    IEEE Trans Biomed Eng; 1996 Sep; 43(9):970-2. PubMed ID: 9214813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mechanism of the effect of weak electromagnetic fields on the living body].
    Sidorenko VM
    Biofizika; 2001; 46(3):500-4. PubMed ID: 11449551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The frequency dependence of an analytical model of an electrically stimulated biological structure.
    Drago GP; Marchesi M; Ridella S
    Bioelectromagnetics; 1984; 5(1):47-62. PubMed ID: 6712749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of electrical fields inside a biological structure.
    Drago GP; Ridella S
    Br J Cancer Suppl; 1982 Mar; 5():215-9. PubMed ID: 6279135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioelectrorheological model of the cell. VI. Experimental verification of the rheological model of cytoplasmic membrane.
    Pawlowski P; Szutowicz I; Rózycki S; Zieliński J; Fikus M
    Biophys J; 1996 Feb; 70(2):1024-6. PubMed ID: 8789120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comments on the use of electromagnetic fields in biological studies.
    Parkinson WC
    Calcif Tissue Int; 1985 Mar; 37(2):198-207. PubMed ID: 3924375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric fields within cells as a function of membrane resistivity--a model study.
    Mossop BJ; Barr RC; Zaharoff DA; Yuan F
    IEEE Trans Nanobioscience; 2004 Sep; 3(3):225-31. PubMed ID: 15473075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Second-order model of membrane electric field induced by alternating external electric fields.
    Kotnik T; Miklavcic D
    IEEE Trans Biomed Eng; 2000 Aug; 47(8):1074-81. PubMed ID: 10943056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectro-deformations of erythrocyte: analysis of the ellipsoidal shear model.
    Kononenko VL; Ilyina TA
    Membr Cell Biol; 2001; 14(4):537-51. PubMed ID: 11497108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Analysis of frequency-domain and window effect for cellular inner and outer membranes subjected to pulsatile electric field].
    Yao C; Chen X; Li C; Mi Y; Sun C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Feb; 28(1):12-7. PubMed ID: 21485174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study of the electrical conductivity and polarization in a suspension of spherical cells.
    Ramos A; Suzuki DO; Marques JL
    Bioelectrochemistry; 2006 May; 68(2):213-7. PubMed ID: 16256446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of membrane permeability for ions on cell behaviour in an electric alternating field.
    Despa S
    Phys Med Biol; 1995 Sep; 40(9):1399-409. PubMed ID: 8532754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.