These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 26013685)
1. Special characteristics of the transcription and splicing machinery in photoreceptor cells of the mammalian retina. Derlig K; Giessl A; Brandstätter JH; Enz R; Dahlhaus R Cell Tissue Res; 2015 Nov; 362(2):281-94. PubMed ID: 26013685 [TBL] [Abstract][Full Text] [Related]
2. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Solovei I; Kreysing M; Lanctôt C; Kösem S; Peichl L; Cremer T; Guck J; Joffe B Cell; 2009 Apr; 137(2):356-68. PubMed ID: 19379699 [TBL] [Abstract][Full Text] [Related]
3. Inverted nuclear architecture and its development during differentiation of mouse rod photoreceptor cells: a new model to study nuclear architecture. Solovei I; Joffe B Genetika; 2010 Sep; 46(9):1159-63. PubMed ID: 21058510 [TBL] [Abstract][Full Text] [Related]
4. Epigenetics of eu- and heterochromatin in inverted and conventional nuclei from mouse retina. Eberhart A; Feodorova Y; Song C; Wanner G; Kiseleva E; Furukawa T; Kimura H; Schotta G; Leonhardt H; Joffe B; Solovei I Chromosome Res; 2013 Aug; 21(5):535-54. PubMed ID: 23996328 [TBL] [Abstract][Full Text] [Related]
5. A new application of the phase-field method for understanding the mechanisms of nuclear architecture reorganization. Lee SS; Tashiro S; Awazu A; Kobayashi R J Math Biol; 2017 Jan; 74(1-2):333-354. PubMed ID: 27241726 [TBL] [Abstract][Full Text] [Related]
6. Casz1 controls higher-order nuclear organization in rod photoreceptors. Mattar P; Stevanovic M; Nad I; Cayouette M Proc Natl Acad Sci U S A; 2018 Aug; 115(34):E7987-E7996. PubMed ID: 30072429 [TBL] [Abstract][Full Text] [Related]
7. Physical insight into light scattering by photoreceptor cell nuclei. Kreysing M; Boyde L; Guck J; Chalut KJ Opt Lett; 2010 Aug; 35(15):2639-41. PubMed ID: 20680084 [TBL] [Abstract][Full Text] [Related]
8. IGF-1 produced by cone photoreceptors regulates rod progenitor proliferation in the teleost retina. Zygar CA; Colbert S; Yang D; Fernald RD Brain Res Dev Brain Res; 2005 Jan; 154(1):91-100. PubMed ID: 15617759 [TBL] [Abstract][Full Text] [Related]
9. Developmentally regulated linker histone H1c promotes heterochromatin condensation and mediates structural integrity of rod photoreceptors in mouse retina. Popova EY; Grigoryev SA; Fan Y; Skoultchi AI; Zhang SS; Barnstable CJ J Biol Chem; 2013 Jun; 288(24):17895-907. PubMed ID: 23645681 [TBL] [Abstract][Full Text] [Related]
10. Preferential localization of γH2AX foci in euchromatin of retina rod cells after DNA damage induction. Lafon-Hughes L; Di Tomaso MV; Liddle P; Toledo A; Reyes-Ábalos AL; Folle GA Chromosome Res; 2013 Dec; 21(8):789-803. PubMed ID: 24323064 [TBL] [Abstract][Full Text] [Related]
11. Connexin 36 in photoreceptor cells: studies on transgenic rod-less and cone-less mouse retinas. Dang L; Pulukuri S; Mears AJ; Swaroop A; Reese BE; Sitaramayya A Mol Vis; 2004 May; 10():323-7. PubMed ID: 15152186 [TBL] [Abstract][Full Text] [Related]
12. Expression profiling of the developing and mature Nrl-/- mouse retina: identification of retinal disease candidates and transcriptional regulatory targets of Nrl. Yoshida S; Mears AJ; Friedman JS; Carter T; He S; Oh E; Jing Y; Farjo R; Fleury G; Barlow C; Hero AO; Swaroop A Hum Mol Genet; 2004 Jul; 13(14):1487-503. PubMed ID: 15163632 [TBL] [Abstract][Full Text] [Related]
13. The expression analysis of Sfrs10 and Celf4 during mouse retinal development. Karunakaran DK; Congdon S; Guerrette T; Banday AR; Lemoine C; Chhaya N; Kanadia R Gene Expr Patterns; 2013 Dec; 13(8):425-36. PubMed ID: 23932931 [TBL] [Abstract][Full Text] [Related]
14. Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit. Barnard AR; Appleford JM; Sekaran S; Chinthapalli K; Jenkins A; Seeliger M; Biel M; Humphries P; Douglas RH; Wenzel A; Foster RG; Hankins MW; Lucas RJ Vis Neurosci; 2004; 21(5):675-83. PubMed ID: 15683556 [TBL] [Abstract][Full Text] [Related]
15. Expression and localization of the cannabinoid receptor type 1 and the enzyme fatty acid amide hydrolase in the retina of vervet monkeys. Bouskila J; Burke MW; Zabouri N; Casanova C; Ptito M; Bouchard JF Neuroscience; 2012 Jan; 202():117-30. PubMed ID: 22142900 [TBL] [Abstract][Full Text] [Related]
17. Does recombinant adeno-associated virus-vectored proximal region of mouse rhodopsin promoter support only rod-type specific expression in vivo? Glushakova LG; Timmers AM; Issa TM; Cortez NG; Pang J; Teusner JT; Hauswirth WW Mol Vis; 2006 Apr; 12():298-309. PubMed ID: 16617297 [TBL] [Abstract][Full Text] [Related]
18. Nuclear organization and dynamics of transcription sites in rat sensory ganglia neurons detected by incorporation of 5'-fluorouridine into nascent RNA. Casafont I; Navascués J; Pena E; Lafarga M; Berciano MT Neuroscience; 2006 Jun; 140(2):453-62. PubMed ID: 16563640 [TBL] [Abstract][Full Text] [Related]
19. Expression of vesicular glutamate transporter 1 in the mouse retina reveals temporal ordering in development of rod vs. cone and ON vs. OFF circuits. Sherry DM; Wang MM; Bates J; Frishman LJ J Comp Neurol; 2003 Oct; 465(4):480-98. PubMed ID: 12975811 [TBL] [Abstract][Full Text] [Related]
20. Global chromatin relabeling accompanies spatial inversion of chromatin in rod photoreceptors. Smith CL; Lan Y; Jain R; Epstein JA; Poleshko A Sci Adv; 2021 Sep; 7(39):eabj3035. PubMed ID: 34559565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]