BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26013741)

  • 1. Comment on "Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring A. Najah & A. El-Shafie & O. A. Karim & Amr H. El-Shafie. Environ Sci Pollut Res (2014) 21:1658-1670".
    Rajaee T; Khani S
    Environ Sci Pollut Res Int; 2016 Jan; 23(1):938-40. PubMed ID: 26013741
    [No Abstract]   [Full Text] [Related]  

  • 2. Comment on "Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring A. Najah & A. El-Shafie & O. A. Karim & Amr H. El-Shafie. Environ Sci Pollut Res (2014) 21:1658-1670".
    Heddam S
    Environ Sci Pollut Res Int; 2015 Mar; 22(5):3983. PubMed ID: 25391234
    [No Abstract]   [Full Text] [Related]  

  • 3. Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring.
    Najah A; El-Shafie A; Karim OA; El-Shafie AH
    Environ Sci Pollut Res Int; 2014 Feb; 21(3):1658-1670. PubMed ID: 23949111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comment on "Targeting aquatic microcontaminants for monitoring: exposure categorization and application to the Swiss situation [Gotz et al., Environ Sci Pollut Res (2010) 17:341-354]".
    Rayne S
    Environ Sci Pollut Res Int; 2013 Sep; 20(9):6676-7. PubMed ID: 23749371
    [No Abstract]   [Full Text] [Related]  

  • 5. Response to comment of Sierra Rayne on "Targeting aquatic microcontaminants for monitoring: exposure categorization and application to the Swiss situation [Götz et al., Environ Sci Pollut Res (2010) 17:341-354]".
    Götz CW; Fenner K; Hollender J
    Environ Sci Pollut Res Int; 2013 Sep; 20(9):6678-80. PubMed ID: 23749203
    [No Abstract]   [Full Text] [Related]  

  • 6. Monitoring diel dissolved oxygen dynamics through integrating wavelet denoising and temporal neural networks.
    Evrendilek F; Karakaya N
    Environ Monit Assess; 2014 Mar; 186(3):1583-91. PubMed ID: 24100799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of dissolved oxygen in the Mediterranean Sea along Gaza, Palestine - an artificial neural network approach.
    Zaqoot HA; Ansari AK; Unar MA; Khan SH
    Water Sci Technol; 2009; 60(12):3051-9. PubMed ID: 19955628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial neural network modeling of dissolved oxygen in reservoir.
    Chen WB; Liu WC
    Environ Monit Assess; 2014 Feb; 186(2):1203-17. PubMed ID: 24078053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ANN application for prediction of atmospheric nitrogen deposition to aquatic ecosystems.
    Palani S; Tkalich P; Balasubramanian R; Palanichamy J
    Mar Pollut Bull; 2011 Jun; 62(6):1198-206. PubMed ID: 21481425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea.
    Park Y; Cho KH; Park J; Cha SM; Kim JH
    Sci Total Environ; 2015 Jan; 502():31-41. PubMed ID: 25241206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of arsenic concentration in stream water using neuro fuzzy networks with factor analysis.
    Chang FJ; Chung CH; Chen PA; Liu CW; Coynel A; Vachaud G
    Sci Total Environ; 2014 Oct; 494-495():202-10. PubMed ID: 25046611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A data-mining framework for exploring the multi-relation between fish species and water quality through self-organizing map.
    Tsai WP; Huang SP; Cheng ST; Shao KT; Chang FJ
    Sci Total Environ; 2017 Feb; 579():474-483. PubMed ID: 27866743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple but effective model calibration for nitrite in northern lakes.
    Snow A; Vandenberg J
    Integr Environ Assess Manag; 2016 Oct; 12(4):821-2. PubMed ID: 27640418
    [No Abstract]   [Full Text] [Related]  

  • 14. Nanoplankton population dynamics and dissolved oxygen change across the Bay of Izmir by neural networks.
    Sunlu FS; Demir I; Onkal Engin G; Buyukisik B; Sunlu U; Koray T; Kukrer S
    J Environ Monit; 2009 Jun; 11(6):1165-8. PubMed ID: 19513447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrate and nitrite holding time study completed for a northern Canadian mine.
    Love J; Humphries A; Hall T
    Integr Environ Assess Manag; 2016 Oct; 12(4):823-4. PubMed ID: 27640419
    [No Abstract]   [Full Text] [Related]  

  • 16. Use of ultraviolet-visible spectrophotometry associated with artificial neural networks as an alternative for determining the water quality index.
    Alves EM; Rodrigues RJ; Dos Santos Corrêa C; Fidemann T; Rocha JC; Buzzo JLL; de Oliva Neto P; Núñez EGF
    Environ Monit Assess; 2018 May; 190(6):319. PubMed ID: 29717330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water quality assessment of the Li Canal using a functional fuzzy synthetic evaluation model.
    Feng Y; Ling L
    Environ Sci Process Impacts; 2014 Jul; 16(7):1764-71. PubMed ID: 24835844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing water quality monitoring networks using continuous longitudinal monitoring data: a case study of Wen-Rui Tang River, Wenzhou, China.
    Mei K; Zhu Y; Liao L; Dahlgren R; Shang X; Zhang M
    J Environ Monit; 2011 Oct; 13(10):2755-62. PubMed ID: 21915414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing of sampling programmes for industrial effluent monitoring.
    Ntuli F; Kuipa PK; Muzenda E
    Environ Sci Pollut Res Int; 2011 Mar; 18(3):479-84. PubMed ID: 20853154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NOAA's Mussel Watch Program: Incorporating contaminants of emerging concern (CECs) into a long-term monitoring program.
    Bricker S; Lauenstein G; Maruya K
    Mar Pollut Bull; 2014 Apr; 81(2):289-90. PubMed ID: 23871202
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.