BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

759 related articles for article (PubMed ID: 26013948)

  • 1. Miscanthus as cellulosic biomass for bioethanol production.
    Lee WC; Kuan WC
    Biotechnol J; 2015 Jun; 10(6):840-54. PubMed ID: 26013948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of fertilizer application and dry/wet processing of Miscanthus x giganteus on bioethanol production.
    Boakye-Boaten NA; Xiu S; Shahbazi A; Wang L; Li R; Mims M; Schimmel K
    Bioresour Technol; 2016 Mar; 204():98-105. PubMed ID: 26773953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioethanol production from dedicated energy crops and residues in Arkansas, USA.
    Ge X; Burner DM; Xu J; Phillips GC; Sivakumar G
    Biotechnol J; 2011 Jan; 6(1):66-73. PubMed ID: 21086455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pretreatment solution recycling and high-concentration output for economical production of bioethanol.
    Han M; Moon SK; Choi GW
    Bioprocess Biosyst Eng; 2014 Nov; 37(11):2205-13. PubMed ID: 24794172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pretreatment of reed by wet oxidation and subsequent utilization of the pretreated fibers for ethanol production.
    Szijártó N; Kádár Z; Varga E; Thomsen AB; Costa-Ferreira M; Réczey K
    Appl Biochem Biotechnol; 2009 May; 155(1-3):386-96. PubMed ID: 19214791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A finalized determinant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy
    Alam A; Zhang R; Liu P; Huang J; Wang Y; Hu Z; Madadi M; Sun D; Hu R; Ragauskas AJ; Tu Y; Peng L
    Biotechnol Biofuels; 2019; 12():99. PubMed ID: 31057665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic cavitation as a novel pretreatment approach for bioethanol production from reed.
    Kim I; Lee I; Jeon SH; Hwang T; Han JI
    Bioresour Technol; 2015 Sep; 192():335-9. PubMed ID: 26056773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous alkaline pretreatment of Miscanthus sacchariflorus using a bench-scale single screw reactor.
    Cha YL; Yang J; Park Y; An GH; Ahn JW; Moon YH; Yoon YM; Yu GD; Choi IH
    Bioresour Technol; 2015 Apr; 181():338-44. PubMed ID: 25681689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of alkaline pretreatment of coffee pulp for production of bioethanol.
    Menezes EG; do Carmo JR; Alves JG; Menezes AG; Guimarães IC; Queiroz F; Pimenta CJ
    Biotechnol Prog; 2014; 30(2):451-62. PubMed ID: 24376222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ammonia fiber expansion (AFEX) pretreatment, enzymatic hydrolysis, and fermentation on empty palm fruit bunch fiber (EPFBF) for cellulosic ethanol production.
    Lau MJ; Lau MW; Gunawan C; Dale BE
    Appl Biochem Biotechnol; 2010 Nov; 162(7):1847-57. PubMed ID: 20419480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.
    Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L
    J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of ammonia fiber expansion (AFEX) pretreatment and enzymatic hydrolysis of Miscanthus x giganteus to fermentable sugars.
    Murnen HK; Balan V; Chundawat SP; Bals B; Sousa Lda C; Dale BE
    Biotechnol Prog; 2007; 23(4):846-50. PubMed ID: 17585779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced hydrolysis of lignocellulosic biomass: Bi-functional enzyme complexes expressed in Pichia pastoris improve bioethanol production from Miscanthus sinensis.
    Shin SK; Hyeon JE; Kim YI; Kang DH; Kim SW; Park C; Han SO
    Biotechnol J; 2015 Dec; 10(12):1912-9. PubMed ID: 26479167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production.
    Li H; Kim NJ; Jiang M; Kang JW; Chang HN
    Bioresour Technol; 2009 Jul; 100(13):3245-51. PubMed ID: 19289273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing the performance of Miscanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment.
    Kärcher MA; Iqbal Y; Lewandowski I; Senn T
    Bioresour Technol; 2015 Mar; 180():360-4. PubMed ID: 25613555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of ethanol production from microfluidized wheat straw by response surface methodology.
    Turhan O; Isci A; Mert B; Sakiyan O; Donmez S
    Prep Biochem Biotechnol; 2015; 45(8):785-95. PubMed ID: 25181638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products.
    Zhuang X; Wang W; Yu Q; Qi W; Wang Q; Tan X; Zhou G; Yuan Z
    Bioresour Technol; 2016 Jan; 199():68-75. PubMed ID: 26403722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta.
    Lee OK; Kim AL; Seong DH; Lee CG; Jung YT; Lee JW; Lee EY
    Bioresour Technol; 2013 Mar; 132():197-201. PubMed ID: 23411448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scale-up study of oxalic acid pretreatment of agricultural lignocellulosic biomass for the production of bioethanol.
    Lee JW; Houtman CJ; Kim HY; Choi IG; Jeffries TW
    Bioresour Technol; 2011 Aug; 102(16):7451-6. PubMed ID: 21632241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioethanol production from Ipomoea carnea biomass using a potential hybrid yeast strain.
    Kumari R; Pramanik K
    Appl Biochem Biotechnol; 2013 Oct; 171(3):771-85. PubMed ID: 23892623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.