BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 26013960)

  • 1. Cell seeding density is a critical determinant for copolymer scaffolds-induced bone regeneration.
    Yassin MA; Leknes KN; Pedersen TO; Xing Z; Sun Y; Lie SA; Finne-Wistrand A; Mustafa K
    J Biomed Mater Res A; 2015 Nov; 103(11):3649-58. PubMed ID: 26013960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of endothelial cells on bone regeneration using poly(L-lactide-co-1,5-dioxepan-2-one) scaffolds.
    Xing Z; Xue Y; Dånmark S; Schander K; Ostvold S; Arvidson K; Hellem S; Finne-Wistrand A; Albertsson AC; Mustafa K
    J Biomed Mater Res A; 2011 Feb; 96(2):349-57. PubMed ID: 21171154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth and differentiation of bone marrow stromal cells on biodegradable polymer scaffolds: an in vitro study.
    Xue Y; Dånmark S; Xing Z; Arvidson K; Albertsson AC; Hellem S; Finne-Wistrand A; Mustafa K
    J Biomed Mater Res A; 2010 Dec; 95(4):1244-51. PubMed ID: 20939051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal Seeding Densities for In Vitro Chondrogenesis of Two- and Three-Dimensional-Isolated and -Expanded Bone Marrow-Derived Mesenchymal Stromal Stem Cells Within a Porous Collagen Scaffold.
    Bornes TD; Jomha NM; Mulet-Sierra A; Adesida AB
    Tissue Eng Part C Methods; 2016 Mar; 22(3):208-20. PubMed ID: 26651081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Copolymer Scaffold Functionalized with Nanodiamond Particles Enhances Osteogenic Metabolic Activity and Bone Regeneration.
    Yassin MA; Mustafa K; Xing Z; Sun Y; Fasmer KE; Waag T; Krueger A; Steinmüller-Nethl D; Finne-Wistrand A; Leknes KN
    Macromol Biosci; 2017 Jun; 17(6):. PubMed ID: 28116858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Umbilical cord and bone marrow mesenchymal stem cell seeding on macroporous calcium phosphate for bone regeneration in rat cranial defects.
    Chen W; Liu J; Manuchehrabadi N; Weir MD; Zhu Z; Xu HH
    Biomaterials; 2013 Dec; 34(38):9917-25. PubMed ID: 24054499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological effects of functionalizing copolymer scaffolds with nanodiamond particles.
    Xing Z; Pedersen TO; Wu X; Xue Y; Sun Y; Finne-Wistrand A; Kloss FR; Waag T; Krueger A; Steinmüller-Nethl D; Mustafa K
    Tissue Eng Part A; 2013 Aug; 19(15-16):1783-91. PubMed ID: 23574424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant tuning of hydrophilicity of porous degradable copolymer scaffolds promotes cellular proliferation and enhances bone formation.
    Yassin MA; Leknes KN; Sun Y; Lie SA; Finne-Wistrand A; Mustafa K
    J Biomed Mater Res A; 2016 Aug; 104(8):2049-59. PubMed ID: 27086867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of bone regenerative capacity of donor-matched human adipose-derived and bone marrow mesenchymal stem cells.
    Mohamed-Ahmed S; Yassin MA; Rashad A; Espedal H; Idris SB; Finne-Wistrand A; Mustafa K; Vindenes H; Fristad I
    Cell Tissue Res; 2021 Mar; 383(3):1061-1075. PubMed ID: 33242173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delivery of VEGFA in bone marrow stromal cells seeded in copolymer scaffold enhances angiogenesis, but is inadequate for osteogenesis as compared with the dual delivery of VEGFA and BMP2 in a subcutaneous mouse model.
    Sharma S; Sapkota D; Xue Y; Rajthala S; Yassin MA; Finne-Wistrand A; Mustafa K
    Stem Cell Res Ther; 2018 Jan; 9(1):23. PubMed ID: 29386057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.
    Ye X; Yin X; Yang D; Tan J; Liu G
    Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair of critical-sized bone defects with anti-miR-31-expressing bone marrow stromal stem cells and poly(glycerol sebacate) scaffolds.
    Deng Y; Bi X; Zhou H; You Z; Wang Y; Gu P; Fan X
    Eur Cell Mater; 2014 Jan; 27():13-24; discussion 24-5. PubMed ID: 24425157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable polymer scaffolds loaded with low-dose BMP-2 stimulate periodontal ligament cell differentiation.
    Skodje A; Idris SB; Sun Y; Bartaula S; Mustafa K; Finne-Wistrand A; Wikesjö UM; Leknes KN
    J Biomed Mater Res A; 2015 Jun; 103(6):1991-8. PubMed ID: 25231842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds in the absence of osteogenic cell culture supplements.
    Thibault RA; Scott Baggett L; Mikos AG; Kasper FK
    Tissue Eng Part A; 2010 Feb; 16(2):431-40. PubMed ID: 19863274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repairing critical-sized calvarial defects with BMSCs modified by a constitutively active form of hypoxia-inducible factor-1α and a phosphate cement scaffold.
    Zou D; Zhang Z; He J; Zhu S; Wang S; Zhang W; Zhou J; Xu Y; Huang Y; Wang Y; Han W; Zhou Y; Wang S; You S; Jiang X; Huang Y
    Biomaterials; 2011 Dec; 32(36):9707-18. PubMed ID: 21975460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone regeneration in minipigs via calcium phosphate cement scaffold delivering autologous bone marrow mesenchymal stem cells and platelet-rich plasma.
    Qiu G; Shi Z; Xu HHK; Yang B; Weir MD; Li G; Song Y; Wang J; Hu K; Wang P; Zhao L
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e937-e948. PubMed ID: 28102000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.
    Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C
    Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs.
    Liu H; Peng H; Wu Y; Zhang C; Cai Y; Xu G; Li Q; Chen X; Ji J; Zhang Y; OuYang HW
    Biomaterials; 2013 Jun; 34(18):4404-17. PubMed ID: 23515177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The combination of nano-calcium sulfate/platelet rich plasma gel scaffold with BMP2 gene-modified mesenchymal stem cells promotes bone regeneration in rat critical-sized calvarial defects.
    Liu Z; Yuan X; Fernandes G; Dziak R; Ionita CN; Li C; Wang C; Yang S
    Stem Cell Res Ther; 2017 May; 8(1):122. PubMed ID: 28545565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.