BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 26014385)

  • 1. LRRK2 Promotes Tau Accumulation, Aggregation and Release.
    Guerreiro PS; Gerhardt E; Lopes da Fonseca T; Bähr M; Outeiro TF; Eckermann K
    Mol Neurobiol; 2016 Jul; 53(5):3124-3135. PubMed ID: 26014385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LRRK2, alpha-synuclein, and tau: partners in crime or unfortunate bystanders?
    Outeiro TF; Harvey K; Dominguez-Meijide A; Gerhardt E
    Biochem Soc Trans; 2019 Jun; 47(3):827-838. PubMed ID: 31085616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of LRRK2-dependent neurodegeneration: role of enzymatic activity and protein aggregation.
    Islam MS; Moore DJ
    Biochem Soc Trans; 2017 Feb; 45(1):163-172. PubMed ID: 28202670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiologically relevant factors influence tau phosphorylation by leucine-rich repeat kinase 2.
    Hamm M; Bailey R; Shaw G; Yen SH; Lewis J; Giasson BI
    J Neurosci Res; 2015 Oct; 93(10):1567-80. PubMed ID: 26123245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LRRK2 interferes with aggresome formation for autophagic clearance.
    Bang Y; Kim KS; Seol W; Choi HJ
    Mol Cell Neurosci; 2016 Sep; 75():71-80. PubMed ID: 27364102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay between Leucine-Rich Repeat Kinase 2 (LRRK2) and p62/SQSTM-1 in Selective Autophagy.
    Park S; Han S; Choi I; Kim B; Park SP; Joe EH; Suh YH
    PLoS One; 2016; 11(9):e0163029. PubMed ID: 27631370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LRRK2 impairs autophagy by mediating phosphorylation of leucyl-tRNA synthetase.
    Ho DH; Kim H; Nam D; Sim H; Kim J; Kim HG; Son I; Seol W
    Cell Biochem Funct; 2018 Dec; 36(8):431-442. PubMed ID: 30411383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. I2020T mutant LRRK2 iPSC-derived neurons in the Sagamihara family exhibit increased Tau phosphorylation through the AKT/GSK-3β signaling pathway.
    Ohta E; Nihira T; Uchino A; Imaizumi Y; Okada Y; Akamatsu W; Takahashi K; Hayakawa H; Nagai M; Ohyama M; Ryo M; Ogino M; Murayama S; Takashima A; Nishiyama K; Mizuno Y; Mochizuki H; Obata F; Okano H
    Hum Mol Genet; 2015 Sep; 24(17):4879-900. PubMed ID: 26056228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lack of exacerbation of neurodegeneration in a double transgenic mouse model of mutant LRRK2 and tau.
    Mikhail F; Calingasan N; Parolari L; Subramanian A; Yang L; Flint Beal M
    Hum Mol Genet; 2015 Jun; 24(12):3545-56. PubMed ID: 25804954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leucine-rich repeat kinase 2 regulates tau phosphorylation through direct activation of glycogen synthase kinase-3β.
    Kawakami F; Shimada N; Ohta E; Kagiya G; Kawashima R; Maekawa T; Maruyama H; Ichikawa T
    FEBS J; 2014 Jan; 281(1):3-13. PubMed ID: 24165324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LRRK2 Facilitates tau Phosphorylation through Strong Interaction with tau and cdk5.
    Shanley MR; Hawley D; Leung S; Zaidi NF; Dave R; Schlosser KA; Bandopadhyay R; Gerber SA; Liu M
    Biochemistry; 2015 Aug; 54(33):5198-208. PubMed ID: 26268594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The G2385R risk factor for Parkinson's disease enhances CHIP-dependent intracellular degradation of LRRK2.
    Rudenko IN; Kaganovich A; Langston RG; Beilina A; Ndukwe K; Kumaran R; Dillman AA; Chia R; Cookson MR
    Biochem J; 2017 Apr; 474(9):1547-1558. PubMed ID: 28320779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LRRK2 I2020T mutation is associated with tau pathology.
    Ujiie S; Hatano T; Kubo S; Imai S; Sato S; Uchihara T; Yagishita S; Hasegawa K; Kowa H; Sakai F; Hattori N
    Parkinsonism Relat Disord; 2012 Aug; 18(7):819-23. PubMed ID: 22525366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LRRK2 phosphorylates novel tau epitopes and promotes tauopathy.
    Bailey RM; Covy JP; Melrose HL; Rousseau L; Watkinson R; Knight J; Miles S; Farrer MJ; Dickson DW; Giasson BI; Lewis J
    Acta Neuropathol; 2013 Dec; 126(6):809-27. PubMed ID: 24113872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fbxl18 targets LRRK2 for proteasomal degradation and attenuates cell toxicity.
    Ding X; Barodia SK; Ma L; Goldberg MS
    Neurobiol Dis; 2017 Feb; 98():122-136. PubMed ID: 27890708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenoviral-mediated expression of G2019S LRRK2 induces striatal pathology in a kinase-dependent manner in a rat model of Parkinson's disease.
    Tsika E; Nguyen AP; Dusonchet J; Colin P; Schneider BL; Moore DJ
    Neurobiol Dis; 2015 May; 77():49-61. PubMed ID: 25731749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening for the LRRK2 G2019S and codon-1441 mutations in a pathological series of parkinsonian syndromes and frontotemporal lobar degeneration.
    Gaig C; Ezquerra M; Martí MJ; Valldeoriola F; Muñoz E; Lladó A; Rey MJ; Cardozo A; Molinuevo JL; Tolosa E
    J Neurol Sci; 2008 Jul; 270(1-2):94-8. PubMed ID: 18353371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lrrk promotes tau neurotoxicity through dysregulation of actin and mitochondrial dynamics.
    Bardai FH; Ordonez DG; Bailey RM; Hamm M; Lewis J; Feany MB
    PLoS Biol; 2018 Dec; 16(12):e2006265. PubMed ID: 30571694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Threonine 56 phosphorylation of Bcl-2 is required for LRRK2 G2019S-induced mitochondrial depolarization and autophagy.
    Su YC; Guo X; Qi X
    Biochim Biophys Acta; 2015 Jan; 1852(1):12-21. PubMed ID: 25446991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation.
    Su YC; Qi X
    Hum Mol Genet; 2013 Nov; 22(22):4545-61. PubMed ID: 23813973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.