BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1666 related articles for article (PubMed ID: 26014439)

  • 1. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes.
    Wang J; Meng X; Fan X; Zhang W; Zhang H; Wang C
    ACS Nano; 2015 Jun; 9(6):6576-86. PubMed ID: 26014439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes.
    Liu J; Li N; Goodman MD; Zhang HG; Epstein ES; Huang B; Pan Z; Kim J; Choi JH; Huang X; Liu J; Hsia KJ; Dillon SJ; Braun PV
    ACS Nano; 2015 Feb; 9(2):1985-94. PubMed ID: 25639798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries.
    Chen Y; Zeng S; Qian J; Wang Y; Cao Y; Yang H; Ai X
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3508-12. PubMed ID: 24467155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulating micro-nano Si/SiO(x) into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries.
    Wang J; Zhou M; Tan G; Chen S; Wu F; Lu J; Amine K
    Nanoscale; 2015 May; 7(17):8023-34. PubMed ID: 25865463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective Infiltration of Gel Polymer Electrolyte into Silicon-Coated Vertically Aligned Carbon Nanofibers as Anodes for Solid-State Lithium-Ion Batteries.
    Pandey GP; Klankowski SA; Li Y; Sun XS; Wu J; Rojeski RA; Li J
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20909-18. PubMed ID: 26325385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes.
    Lu Z; Liu N; Lee HW; Zhao J; Li W; Li Y; Cui Y
    ACS Nano; 2015 Mar; 9(3):2540-7. PubMed ID: 25738223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel mesoporous Si@C microspheres as anodes for lithium-ion batteries.
    Ma X; Liu M; Gan L; Tripathi PK; Zhao Y; Zhu D; Xu Z; Chen L
    Phys Chem Chem Phys; 2014 Mar; 16(9):4135-42. PubMed ID: 24448656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable Synthesis of Pore-Rich Si/C@C Core-Shell-Structured Microspheres for Practical Long-Life Lithium-Ion Battery Anodes.
    An W; He P; Che Z; Xiao C; Guo E; Pang C; He X; Ren J; Yuan G; Du N; Yang D; Peng DL; Zhang Q
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10308-10318. PubMed ID: 35175030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caramel popcorn shaped silicon particle with carbon coating as a high performance anode material for Li-ion batteries.
    He M; Sa Q; Liu G; Wang Y
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11152-8. PubMed ID: 24111737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise Perforation and Scalable Production of Si Particles from Low-Grade Sources for High-Performance Lithium Ion Battery Anodes.
    Zong L; Jin Y; Liu C; Zhu B; Hu X; Lu Z; Zhu J
    Nano Lett; 2016 Nov; 16(11):7210-7215. PubMed ID: 27704857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries.
    Huang S; Cheong LZ; Wang D; Shen C
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23672-23678. PubMed ID: 28661118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes.
    Wang L; Gao B; Peng C; Peng X; Fu J; Chu PK; Huo K
    Nanoscale; 2015 Sep; 7(33):13840-7. PubMed ID: 26098990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Electrochemical Performance of Electrostatic Self-Assembled Nano-Silicon@N-Doped Reduced Graphene Oxide/Carbon Nanofibers Composite as Anode Material for Lithium-Ion Batteries.
    Cong R; Park HH; Jo M; Lee H; Lee CS
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilizing Nanosized Si Anodes with the Synergetic Usage of Atomic Layer Deposition and Electrolyte Additives for Li-Ion Batteries.
    Hy S; Chen YH; Cheng HM; Pan CJ; Cheng JH; Rick J; Hwang BJ
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13801-7. PubMed ID: 25989244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Considering Critical Factors of Li-rich Cathode and Si Anode Materials for Practical Li-ion Cell Applications.
    Ko M; Oh P; Chae S; Cho W; Cho J
    Small; 2015 Sep; 11(33):4058-73. PubMed ID: 26108922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries.
    Cheng XB; Peng HJ; Huang JQ; Zhang R; Zhao CZ; Zhang Q
    ACS Nano; 2015 Jun; 9(6):6373-82. PubMed ID: 26042545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-shell Si-N-doped C assembled via an oxidative template for lithium-ion anodes.
    Tu J; Hu L; Jiao S; Hou J; Zhu H
    Phys Chem Chem Phys; 2013 Nov; 15(42):18549-54. PubMed ID: 24076966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and extreme rate capability of Si-Al-C-N functionalized carbon nanotube spray-on coatings as Li-ion battery electrode.
    David L; Asok D; Singh G
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16056-64. PubMed ID: 25178109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li-M-Si Ternaries (M = Mg, Zn, Al, Ca).
    Han B; Liao C; Dogan F; Trask SE; Lapidus SH; Vaughey JT; Key B
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29780-29790. PubMed ID: 31318201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable Synthesis of Porous Silicon by Acid Etching of Atomized Al-Si Alloy Powder for Lithium-Ion Batteries.
    Kawaura H; Suzuki R; Kondo Y; Mahara Y
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34909-34921. PubMed ID: 37450898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 84.