These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26014900)

  • 1. Size of gold nanoparticles driving selective amide synthesis through aerobic condensation of aldehydes and amines.
    Miyamura H; Min H; Soulé JF; Kobayashi S
    Angew Chem Int Ed Engl; 2015 Jun; 54(26):7564-7. PubMed ID: 26014900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct amidation from alcohols and amines through a tandem oxidation process catalyzed by heterogeneous-polymer-incarcerated gold nanoparticles under aerobic conditions.
    Soulé JF; Miyamura H; Kobayashi S
    Chem Asian J; 2013 Nov; 8(11):2614-26. PubMed ID: 24166844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Powerful amide synthesis from alcohols and amines under aerobic conditions catalyzed by gold or gold/iron, -nickel or -cobalt nanoparticles.
    Soulé JF; Miyamura H; Kobayashi S
    J Am Chem Soc; 2011 Nov; 133(46):18550-3. PubMed ID: 22017244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tandem oxidative processes catalyzed by polymer-incarcerated multimetallic nanoclusters with molecular oxygen.
    Miyamura H; Kobayashi S
    Acc Chem Res; 2014 Apr; 47(4):1054-66. PubMed ID: 24661043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective imine formation from alcohols and amines catalyzed by polymer incarcerated gold/palladium alloy nanoparticles with molecular oxygen as an oxidant.
    Soulé JF; Miyamura H; Kobayashi S
    Chem Commun (Camb); 2013 Jan; 49(4):355-7. PubMed ID: 23037545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-pot synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines using supported gold and base as catalysts.
    Kegnæs S; Mielby J; Mentzel UV; Jensen T; Fristrup P; Riisager A
    Chem Commun (Camb); 2012 Feb; 48(18):2427-9. PubMed ID: 22274843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supported gold catalysis: from small molecule activation to green chemical synthesis.
    Liu X; He L; Liu YM; Cao Y
    Acc Chem Res; 2014 Mar; 47(3):793-804. PubMed ID: 24328524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphite-supported gold nanoparticles as efficient catalyst for aerobic oxidation of benzylic amines to imines and N-substituted 1,2,3,4-tetrahydroisoquinolines to amides: synthetic applications and mechanistic study.
    So MH; Liu Y; Ho CM; Che CM
    Chem Asian J; 2009 Oct; 4(10):1551-61. PubMed ID: 19777526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold-catalyzed heterogeneous aerobic dehydrogenative amination of α,β-unsaturated aldehydes to enaminals.
    Jin X; Yamaguchi K; Mizuno N
    Angew Chem Int Ed Engl; 2014 Jan; 53(2):455-8. PubMed ID: 24288168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative amide synthesis directly from alcohols with amines.
    Chen C; Hong SH
    Org Biomol Chem; 2011 Jan; 9(1):20-6. PubMed ID: 21063590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water- and organo-dispersible gold nanoparticles supported by using ammonium salts of hyperbranched polystyrene: preparation and catalysis.
    Gao L; Nishikata T; Kojima K; Chikama K; Nagashima H
    Chem Asian J; 2013 Dec; 8(12):3152-63. PubMed ID: 24115377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting gold-mediated catalytic oxidative-coupling reactions from single crystal studies.
    Xu B; Madix RJ; Friend CM
    Acc Chem Res; 2014 Mar; 47(3):761-72. PubMed ID: 24387694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold-catalyzed amide synthesis from aldehydes and amines in aqueous medium.
    Li GL; Kung KK; Wong MK
    Chem Commun (Camb); 2012 Apr; 48(34):4112-4. PubMed ID: 22434237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles.
    Tseng CW; Chang HY; Chang JY; Huang CC
    Nanoscale; 2012 Nov; 4(21):6823-30. PubMed ID: 23011048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of surface charge and electrode material on the size-dependent oxidation of surface-attached metal nanoparticles.
    Masitas RA; Khachian IV; Bill BL; Zamborini FP
    Langmuir; 2014 Nov; 30(43):13075-84. PubMed ID: 25260111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymeric carbon nitride/mesoporous silica composites as catalyst support for Au and Pt nanoparticles.
    Xiao P; Zhao Y; Wang T; Zhan Y; Wang H; Li J; Thomas A; Zhu J
    Chemistry; 2014 Mar; 20(10):2872-8. PubMed ID: 24497094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles.
    Liu H; Shen M; Zhao J; Guo R; Cao X; Zhang G; Shi X
    Colloids Surf B Biointerfaces; 2012 Jun; 94():58-67. PubMed ID: 22326342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remarkable effect of bimetallic nanocluster catalysts for aerobic oxidation of alcohols: combining metals changes the activities and the reaction pathways to aldehydes/carboxylic acids or esters.
    Kaizuka K; Miyamura H; Kobayashi S
    J Am Chem Soc; 2010 Nov; 132(43):15096-8. PubMed ID: 20931964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays.
    Narayanan R; Lipert RJ; Porter MD
    Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zwitterionic-surfactant-stabilized palladium nanoparticles as catalysts in the hydrogen transfer reductive amination of benzaldehydes.
    Drinkel EE; Campedelli RR; Manfredi AM; Fiedler HD; Nome F
    J Org Chem; 2014 Mar; 79(6):2574-9. PubMed ID: 24552129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.