These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 26015280)

  • 1. Giant plasma membrane vesicles: models for understanding membrane organization.
    Levental KR; Levental I
    Curr Top Membr; 2015; 75():25-57. PubMed ID: 26015280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles.
    Baumgart T; Hammond AT; Sengupta P; Hess ST; Holowka DA; Baird BA; Webb WW
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3165-70. PubMed ID: 17360623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential of Proapoptotic Peptides to Induce the Formation of Giant Plasma Membrane Vesicles with Lipid Domains.
    Lauster D; Vazquez O; Schwarzer R; Seitz O; Herrmann A
    Chembiochem; 2015 Jun; 16(9):1288-92. PubMed ID: 25882139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant Plasma Membrane Vesicles: An Experimental Tool for Probing the Effects of Drugs and Other Conditions on Membrane Domain Stability.
    Gerstle Z; Desai R; Veatch SL
    Methods Enzymol; 2018; 603():129-150. PubMed ID: 29673522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raft domains of variable properties and compositions in plasma membrane vesicles.
    Levental I; Grzybek M; Simons K
    Proc Natl Acad Sci U S A; 2011 Jul; 108(28):11411-6. PubMed ID: 21709267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid Peroxidation Drives Liquid-Liquid Phase Separation and Disrupts Raft Protein Partitioning in Biological Membranes.
    Balakrishnan M; Kenworthy AK
    J Am Chem Soc; 2024 Jan; 146(2):1374-1387. PubMed ID: 38171000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1.
    Staneva G; Seigneuret M; Conjeaud H; Puff N; Angelova MI
    Langmuir; 2011 Dec; 27(24):15074-82. PubMed ID: 22026409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids.
    Li G; Wang Q; Kakuda S; London E
    J Lipid Res; 2020 May; 61(5):758-766. PubMed ID: 31964764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating membrane structure and protein behavior using giant plasma membrane vesicles.
    Sezgin E; Kaiser HJ; Baumgart T; Schwille P; Simons K; Levental I
    Nat Protoc; 2012 May; 7(6):1042-51. PubMed ID: 22555243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and regulation of lipid microdomains in cell membranes: theory, modeling, and speculation.
    Fan J; Sammalkorpi M; Haataja M
    FEBS Lett; 2010 May; 584(9):1678-84. PubMed ID: 19854186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy.
    Kahya N
    Chem Phys Lipids; 2006 Jun; 141(1-2):158-68. PubMed ID: 16696961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneity and lateral compartmentalization of plant plasma membranes.
    Zappel NF; Panstruga R
    Curr Opin Plant Biol; 2008 Dec; 11(6):632-40. PubMed ID: 18774330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PI(4,5)P2 degradation promotes the formation of cytoskeleton-free model membrane systems.
    Keller H; Lorizate M; Schwille P
    Chemphyschem; 2009 Nov; 10(16):2805-12. PubMed ID: 19784973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HDLs induce raft domain vanishing in heterogeneous giant vesicles.
    Puff N; Lamazière A; Seigneuret M; Trugnan G; Angelova MI
    Chem Phys Lipids; 2005 Feb; 133(2):195-202. PubMed ID: 15642587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting microdomains in intact cell membranes.
    Lagerholm BC; Weinreb GE; Jacobson K; Thompson NL
    Annu Rev Phys Chem; 2005; 56():309-36. PubMed ID: 15796703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth Conditions and Cell Cycle Phase Modulate Phase Transition Temperatures in RBL-2H3 Derived Plasma Membrane Vesicles.
    Gray EM; Díaz-Vázquez G; Veatch SL
    PLoS One; 2015; 10(9):e0137741. PubMed ID: 26368288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical fluctuations in plasma membrane vesicles.
    Veatch SL; Cicuta P; Sengupta P; Honerkamp-Smith A; Holowka D; Baird B
    ACS Chem Biol; 2008 May; 3(5):287-93. PubMed ID: 18484709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS.
    Schneider F; Waithe D; Clausen MP; Galiani S; Koller T; Ozhan G; Eggeling C; Sezgin E
    Mol Biol Cell; 2017 Jun; 28(11):1507-1518. PubMed ID: 28404749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid microdomains, lipid translocation and the organization of intracellular membrane transport (Review).
    Holthuis JC; van Meer G; Huitema K
    Mol Membr Biol; 2003; 20(3):231-41. PubMed ID: 12893531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane raft association is a determinant of plasma membrane localization.
    Diaz-Rohrer BB; Levental KR; Simons K; Levental I
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8500-5. PubMed ID: 24912166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.