BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26015835)

  • 1. Automated cell viability assessment using a microfluidics based portable imaging flow analyzer.
    Jagannadh VK; Adhikari JV; Gorthi SS
    Biomicrofluidics; 2015 Mar; 9(2):024123. PubMed ID: 26015835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Portable optofluidic absorption flow analyzer for quantitative malaria diagnosis from whole blood.
    Banoth E; Kasula VK; Gorthi SS
    Appl Opt; 2016 Oct; 55(30):8637-8643. PubMed ID: 27828146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optofluidic single-cell absorption flow analyzer for point-of-care diagnosis of malaria.
    Banoth E; Kasula VK; Jagannadh VK; Gorthi SS
    J Biophotonics; 2016 Jun; 9(6):610-8. PubMed ID: 26192714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated quantitative cytological analysis using portable microfluidic microscopy.
    Jagannadh VK; Murthy RS; Srinivasan R; Gorthi SS
    J Biophotonics; 2016 Jun; 9(6):586-95. PubMed ID: 25990413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Portable light-sheet optofluidic microscopy for 3D fluorescence imaging flow cytometry.
    Son J; Mandracchia B; Silva Trenkle AD; Kwong GA; Jia S
    Lab Chip; 2023 Feb; 23(4):624-630. PubMed ID: 36633262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput imaging flow cytometry by optofluidic time-stretch microscopy.
    Lei C; Kobayashi H; Wu Y; Li M; Isozaki A; Yasumoto A; Mikami H; Ito T; Nitta N; Sugimura T; Yamada M; Yatomi Y; Di Carlo D; Ozeki Y; Goda K
    Nat Protoc; 2018 Jul; 13(7):1603-1631. PubMed ID: 29976951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optofluidic fluorescent imaging cytometry on a cell phone.
    Zhu H; Mavandadi S; Coskun AF; Yaglidere O; Ozcan A
    Anal Chem; 2011 Sep; 83(17):6641-7. PubMed ID: 21774454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact and automated particle counting platform using smartphone-microscopy.
    Talebian S; Javanmard M
    Talanta; 2021 Jun; 228():122244. PubMed ID: 33773744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Flow-Induced Microfluidic Chip Wall Deformation on Imaging Flow Cytometry.
    Yalikun Y; Ota N; Guo B; Tang T; Zhou Y; Lei C; Kobayashi H; Hosokawa Y; Li M; Enrique Muñoz H; Di Carlo D; Goda K; Tanaka Y
    Cytometry A; 2020 Sep; 97(9):909-920. PubMed ID: 31856398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Handheld Fluorescence Microscopy based Flow Analyzer.
    Saxena M; Jayakumar N; Gorthi SS
    J Fluoresc; 2016 Mar; 26(2):631-8. PubMed ID: 26715517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Handheld Microflow Cytometer Based on a Motorized Smart Pipette, a Microfluidic Cell Concentrator, and a Miniaturized Fluorescence Microscope.
    Kim B; Kang D; Choi S
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31248214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated Blood Sample Preparation Unit (ABSPU) for Portable Microfluidic Flow Cytometry.
    Chaturvedi A; Gorthi SS
    SLAS Technol; 2017 Feb; 22(1):73-80. PubMed ID: 27558692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.
    Zhu H; Ozcan A
    Methods Mol Biol; 2015; 1256():171-90. PubMed ID: 25626539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Portable and integrated microfluidic flow control system using off-the-shelf components towards organs-on-chip applications.
    Zhu H; Özkayar G; Lötters J; Tichem M; Ghatkesar MK
    Biomed Microdevices; 2023 Jun; 25(2):19. PubMed ID: 37266714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated centrifugal microfluidic strategy for point-of-care complete blood counting.
    Khodadadi R; Eghbal M; Ofoghi H; Balaei A; Tamayol A; Abrinia K; Sanati-Nezhad A; Samandari M
    Biosens Bioelectron; 2024 Feb; 245():115789. PubMed ID: 37979545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Counter Propagating Lens-Mirror System for Ultrahigh Throughput Single Droplet Detection.
    Cao X; Du Y; Küffner A; Van Wyk J; Arosio P; Wang J; Fischer P; Stavrakis S; deMello A
    Small; 2020 May; 16(20):e1907534. PubMed ID: 32309905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array.
    Navruz I; Coskun AF; Wong J; Mohammad S; Tseng D; Nagi R; Phillips S; Ozcan A
    Lab Chip; 2013 Oct; 13(20):4015-23. PubMed ID: 23939637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial microfluidics for sheath-less high-throughput flow cytometry.
    Bhagat AA; Kuntaegowdanahalli SS; Kaval N; Seliskar CJ; Papautsky I
    Biomed Microdevices; 2010 Apr; 12(2):187-95. PubMed ID: 19946752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A confirmatory test for sperm in sexual assault samples using a microfluidic-integrated cell phone imaging system.
    Deshmukh S; Inci F; Karaaslan MG; Ogut MG; Duncan D; Klevan L; Duncan G; Demirci U
    Forensic Sci Int Genet; 2020 Sep; 48():102313. PubMed ID: 32570000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.