These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26015835)

  • 21. MRT letter: light sheet based imaging flow cytometry on a microfluidic platform.
    Regmi R; Mohan K; Mondal PP
    Microsc Res Tech; 2013 Nov; 76(11):1101-7. PubMed ID: 24136899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microprocessor-based integration of microfluidic control for the implementation of automated sensor monitoring and multithreaded optimization algorithms.
    Ezra E; Maor I; Bavli D; Shalom I; Levy G; Prill S; Jaeger MS; Nahmias Y
    Biomed Microdevices; 2015 Aug; 17(4):82. PubMed ID: 26227212
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ferrofluid-based reconfigurable optofluidic switches for integrated sensing and digital data storage.
    Gu Y; Valentino G; Mongeau E
    Appl Opt; 2014 Feb; 53(4):537-43. PubMed ID: 24514168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optically induced dielectropheresis sorting with automated medium exchange in an integrated optofluidic device resulting in higher cell viability.
    Lee GB; Wu HC; Yang PF; Mai JD
    Lab Chip; 2014 Aug; 14(15):2837-43. PubMed ID: 24911448
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On-Chip Cell Staining and Counting Platform for the Rapid Detection of Blood Cells in Cerebrospinal Fluid.
    Lee Y; Kim B; Choi S
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional imaging on a chip using optofluidics light-sheet fluorescence microscopy.
    Vargas-Ordaz EJ; Gorelick S; York HM; Liu B; Halls ML; Arumugam S; Neild A; de Marco A; Cadarso VJ
    Lab Chip; 2021 Aug; 21(15):2945-2954. PubMed ID: 34124739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Fusion of Microfluidics and Optics for On-Chip Detection and Characterization of Microalgae.
    Zheng X; Duan X; Tu X; Jiang S; Song C
    Micromachines (Basel); 2021 Sep; 12(10):. PubMed ID: 34683188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Compact Control System to Enable Automated Operation of Microfluidic Bioanalytical Assays.
    Gonzalez-Suarez AM; Long A; Huang X; Revzin A
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551127
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Portable and automated analyzer for rapid and high precision
    Chi Z; Zhao S; Cui X; Feng Y; Yang L
    J Pharm Anal; 2021 Aug; 11(4):490-498. PubMed ID: 34513125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic Cartridges for Automated, Point-of-Care Blood Cell Counting.
    Smith S; Madzivhandila P; Sewart R; Govender U; Becker H; Roux P; Land K
    SLAS Technol; 2017 Apr; 22(2):176-185. PubMed ID: 27856945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-throughput miniaturized microfluidic microscopy with radially parallelized channel geometry.
    Jagannadh VK; Bhat BP; Nirupa Julius LA; Gorthi SS
    Anal Bioanal Chem; 2016 Mar; 408(7):1909-16. PubMed ID: 26781098
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structured-light-sheet imaging in an integrated optofluidic platform.
    Paiè P; Calisesi G; Candeo A; Comi A; Sala F; Ceccarelli F; De Luigi A; Veglianese P; Muhlberger K; Fokine M; Valentini G; Osellame R; Neil M; Bassi A; Bragheri F
    Lab Chip; 2023 Dec; 24(1):34-46. PubMed ID: 37791882
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-throughput single-microparticle imaging flow analyzer.
    Goda K; Ayazi A; Gossett DR; Sadasivam J; Lonappan CK; Sollier E; Fard AM; Hur SC; Adam J; Murray C; Wang C; Brackbill N; Di Carlo D; Jalali B
    Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11630-5. PubMed ID: 22753513
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optofluidic ptychography on a chip.
    Song P; Guo C; Jiang S; Wang T; Hu P; Hu D; Zhang Z; Feng B; Zheng G
    Lab Chip; 2021 Nov; 21(23):4549-4556. PubMed ID: 34726219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Universal microfluidic automaton for autonomous sample processing: application to the Mars Organic Analyzer.
    Kim J; Jensen EC; Stockton AM; Mathies RA
    Anal Chem; 2013 Aug; 85(16):7682-8. PubMed ID: 23675832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Field-Portable Cell Analyzer without a Microscope and Reagents.
    Seo D; Oh S; Lee M; Hwang Y; Seo S
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29286336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Planar Optofluidic Integration of Ring Resonator and Microfluidic Channels.
    Testa G; Persichetti G; Bernini R
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous-flow C. elegans fluorescence expression analysis with real-time image processing through microfluidics.
    Yan Y; Boey D; Ng LT; Gruber J; Bettiol A; Thakor NV; Chen CH
    Biosens Bioelectron; 2016 Mar; 77():428-34. PubMed ID: 26452079
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential of cell tracking velocimetry as an economical and portable hematology analyzer.
    Gómez-Pastora J; Weigand M; Kim J; Palmer AF; Yazer M; Desai PC; Zborowski M; Chalmers JJ
    Sci Rep; 2022 Feb; 12(1):1692. PubMed ID: 35105914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-throughput optofluidic particle profiling with morphological and chemical specificity.
    Ugawa M; Lei C; Nozawa T; Ideguchi T; Di Carlo D; Ota S; Ozeki Y; Goda K
    Opt Lett; 2015 Oct; 40(20):4803-6. PubMed ID: 26469624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.