These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Acoustofluidics 17: theory and applications of surface acoustic wave devices for particle manipulation. Gedge M; Hill M Lab Chip; 2012 Sep; 12(17):2998-3007. PubMed ID: 22842855 [TBL] [Abstract][Full Text] [Related]
27. In-droplet microparticle separation using travelling surface acoustic wave. Park K; Park J; Jung JH; Destgeer G; Ahmed H; Sung HJ Biomicrofluidics; 2017 Nov; 11(6):064112. PubMed ID: 29308101 [TBL] [Abstract][Full Text] [Related]
29. Lamb Wave-Based Acoustic Radiation Force-Driven Particle Ring Formation Inside a Sessile Droplet. Destgeer G; Ha B; Park J; Sung HJ Anal Chem; 2016 Apr; 88(7):3976-81. PubMed ID: 26937678 [TBL] [Abstract][Full Text] [Related]
30. Contactless acoustic micro/nano manipulation: a paradigm for next generation applications in life sciences. Mohanty S; Khalil ISM; Misra S Proc Math Phys Eng Sci; 2020 Nov; 476(2243):20200621. PubMed ID: 33363443 [TBL] [Abstract][Full Text] [Related]
31. The complexity of surface acoustic wave fields used for microfluidic applications. Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142 [TBL] [Abstract][Full Text] [Related]
32. The importance of travelling wave components in standing surface acoustic wave (SSAW) systems. Devendran C; Albrecht T; Brenker J; Alan T; Neild A Lab Chip; 2016 Sep; 16(19):3756-3766. PubMed ID: 27722363 [TBL] [Abstract][Full Text] [Related]
33. Particle Separation inside a Sessile Droplet with Variable Contact Angle Using Surface Acoustic Waves. Destgeer G; Jung JH; Park J; Ahmed H; Sung HJ Anal Chem; 2017 Jan; 89(1):736-744. PubMed ID: 27959499 [TBL] [Abstract][Full Text] [Related]
34. Vertical Hydrodynamic Focusing and Continuous Acoustofluidic Separation of Particles via Upward Migration. Ahmed H; Destgeer G; Park J; Jung JH; Sung HJ Adv Sci (Weinh); 2018 Feb; 5(2):1700285. PubMed ID: 29619294 [TBL] [Abstract][Full Text] [Related]
35. Enhancement in acoustic focusing of micro and nanoparticles by thinning a microfluidic device. Ota N; Yalikun Y; Suzuki T; Lee SW; Hosokawa Y; Goda K; Tanaka Y R Soc Open Sci; 2019 Feb; 6(2):181776. PubMed ID: 30891287 [TBL] [Abstract][Full Text] [Related]
36. SAW-driven droplet jetting technology in microfluidic: A review. Lei Y; Hu H Biomicrofluidics; 2020 Nov; 14(6):061505. PubMed ID: 33343781 [TBL] [Abstract][Full Text] [Related]
37. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields. Collins DJ; Ma Z; Ai Y Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956 [TBL] [Abstract][Full Text] [Related]
38. Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance. Ali M; Park J Ultrason Sonochem; 2023 Feb; 93():106305. PubMed ID: 36706667 [TBL] [Abstract][Full Text] [Related]
39. Blood platelet enrichment in mass-producible surface acoustic wave (SAW) driven microfluidic chips. Richard C; Fakhfouri A; Colditz M; Striggow F; Kronstein-Wiedemann R; Tonn T; Medina-Sánchez M; Schmidt OG; Gemming T; Winkler A Lab Chip; 2019 Dec; 19(24):4043-4051. PubMed ID: 31723953 [TBL] [Abstract][Full Text] [Related]
40. Flexible acoustic lens-based surface acoustic wave device for manipulation and directional transport of micro-particles. Huang J; Ren X; Zhou Q; Zhou J; Xu Z Ultrasonics; 2023 Feb; 128():106865. PubMed ID: 36260963 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]