These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 26016690)
1. Bacterial Renalase: Structure and Kinetics of an Enzyme with 2- and 6-Dihydro-β-NAD(P) Oxidase Activity from Pseudomonas phaseolicola. Hoag MR; Roman J; Beaupre BA; Silvaggi NR; Moran GR Biochemistry; 2015 Jun; 54(24):3791-802. PubMed ID: 26016690 [TBL] [Abstract][Full Text] [Related]
2. Metabolic function for human renalase: oxidation of isomeric forms of β-NAD(P)H that are inhibitory to primary metabolism. Beaupre BA; Hoag MR; Roman J; Försterling FH; Moran GR Biochemistry; 2015 Jan; 54(3):795-806. PubMed ID: 25531177 [TBL] [Abstract][Full Text] [Related]
3. The catalytic function of renalase: A decade of phantoms. Moran GR Biochim Biophys Acta; 2016 Jan; 1864(1):177-86. PubMed ID: 25900362 [TBL] [Abstract][Full Text] [Related]
4. Renalase does not catalyze the oxidation of catecholamines. Beaupre BA; Hoag MR; Moran GR Arch Biochem Biophys; 2015 Aug; 579():62-6. PubMed ID: 26049000 [TBL] [Abstract][Full Text] [Related]
5. Ligand binding phenomena that pertain to the metabolic function of renalase. Beaupre BA; Roman JV; Hoag MR; Meneely KM; Silvaggi NR; Lamb AL; Moran GR Arch Biochem Biophys; 2016 Dec; 612():46-56. PubMed ID: 27769837 [TBL] [Abstract][Full Text] [Related]
6. FAD-binding site and NADP reactivity in human renalase: a new enzyme involved in blood pressure regulation. Milani M; Ciriello F; Baroni S; Pandini V; Canevari G; Bolognesi M; Aliverti A J Mol Biol; 2011 Aug; 411(2):463-73. PubMed ID: 21699903 [TBL] [Abstract][Full Text] [Related]
7. Kinetics and equilibria of the reductive and oxidative half-reactions of human renalase with α-NADPH. Beaupre BA; Hoag MR; Carmichael BR; Moran GR Biochemistry; 2013 Dec; 52(49):8929-37. PubMed ID: 24266457 [TBL] [Abstract][Full Text] [Related]
8. Renalase is an α-NAD(P)H oxidase/anomerase. Beaupre BA; Carmichael BR; Hoag MR; Shah DD; Moran GR J Am Chem Soc; 2013 Sep; 135(37):13980-7. PubMed ID: 23964689 [TBL] [Abstract][Full Text] [Related]
9. [The history of renalase from amine oxidase to a a-NAD(P)H-oxidase/anomerase]. Severina IS; Fedchenko VI; Veselovsky AV; Medvedev AE Biomed Khim; 2015; 61(6):667-79. PubMed ID: 26716738 [TBL] [Abstract][Full Text] [Related]
10. Pyridoxamine-phosphate oxidases and pyridoxamine-phosphate oxidase-related proteins catalyze the oxidation of 6-NAD(P)H to NAD(P). Marbaix AY; Chehade G; Noël G; Morsomme P; Vertommen D; Bommer GT; Van Schaftingen E Biochem J; 2019 Oct; 476(20):3033-3052. PubMed ID: 31657440 [TBL] [Abstract][Full Text] [Related]
12. Bioorganometallic chemistry. 13. Regioselective reduction of NAD(+) models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5'-methyl phosphate, with in situ generated [CpRh(Bpy)H](+): structure-activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives. Lo HC; Leiva C; Buriez O; Kerr JB; Olmstead MM; Fish RH Inorg Chem; 2001 Dec; 40(26):6705-16. PubMed ID: 11735482 [TBL] [Abstract][Full Text] [Related]
13. Structural determinants of nucleotide coenzyme specificity in the distinctive dinucleotide binding fold of HMG-CoA reductase from Pseudomonas mevalonii. Friesen JA; Lawrence CM; Stauffacher CV; Rodwell VW Biochemistry; 1996 Sep; 35(37):11945-50. PubMed ID: 8810898 [TBL] [Abstract][Full Text] [Related]
14. Roles of histidine-194, aspartate-163, and a glycine-rich sequence of NAD(P)H:quinone oxidoreductase in the interaction with nicotinamide coenzymes. Cui K; Ma Q; Lu AY; Yang CS Arch Biochem Biophys; 1995 Nov; 323(2):265-73. PubMed ID: 7487087 [TBL] [Abstract][Full Text] [Related]
15. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens. Slatner M; Nidetzky B; Kulbe KD Biochemistry; 1999 Aug; 38(32):10489-98. PubMed ID: 10441145 [TBL] [Abstract][Full Text] [Related]
16. Crystallographic study of coenzyme, coenzyme analogue and substrate binding in 6-phosphogluconate dehydrogenase: implications for NADP specificity and the enzyme mechanism. Adams MJ; Ellis GH; Gover S; Naylor CE; Phillips C Structure; 1994 Jul; 2(7):651-68. PubMed ID: 7922042 [TBL] [Abstract][Full Text] [Related]
17. Structures of the dI2dIII1 complex of proton-translocating transhydrogenase with bound, inactive analogues of NADH and NADPH reveal active site geometries. Bhakta T; Whitehead SJ; Snaith JS; Dafforn TR; Wilkie J; Rajesh S; White SA; Jackson JB Biochemistry; 2007 Mar; 46(11):3304-18. PubMed ID: 17323922 [TBL] [Abstract][Full Text] [Related]
18. Improved soluble expression and use of recombinant human renalase. Morrison CS; Paskaleva EE; Rios MA; Beusse TR; Blair EM; Lin LQ; Hu JR; Gorby AH; Dodds DR; Armiger WB; Dordick JS; Koffas MAG PLoS One; 2020; 15(11):e0242109. PubMed ID: 33180865 [TBL] [Abstract][Full Text] [Related]
19. Application of a novel thermostable NAD(P)H oxidase from hyperthermophilic archaeon for the regeneration of both NAD⁺ and NADP⁺. Wu X; Kobori H; Orita I; Zhang C; Imanaka T; Xing XH; Fukui T Biotechnol Bioeng; 2012 Jan; 109(1):53-62. PubMed ID: 21830202 [TBL] [Abstract][Full Text] [Related]
20. Determinants of substrate binding and protonation in the flavoenzyme xenobiotic reductase A. Spiegelhauer O; Werther T; Mende S; Knauer SH; Dobbek H J Mol Biol; 2010 Oct; 403(2):286-98. PubMed ID: 20826164 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]