These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 26016799)
1. 1,3:2,4-Dibenzylidene-D-sorbitol (DBS) and its derivatives--efficient, versatile and industrially-relevant low-molecular-weight gelators with over 100 years of history and a bright future. Okesola BO; Vieira VM; Cornwell DJ; Whitelaw NK; Smith DK Soft Matter; 2015 Jun; 11(24):4768-87. PubMed ID: 26016799 [TBL] [Abstract][Full Text] [Related]
2. Novel poly(ethylene glycol) gel electrolytes prepared using self-assembled 1,3:2,4-dibenzylidene-D-sorbitol. Lai WC; Chen CC Soft Matter; 2014 Jan; 10(2):312-9. PubMed ID: 24651903 [TBL] [Abstract][Full Text] [Related]
3. Comparing and correlating solubility parameters governing the self-assembly of molecular gels using 1,3:2,4-dibenzylidene sorbitol as the gelator. Lan Y; Corradini MG; Liu X; May TE; Borondics F; Weiss RG; Rogers MA Langmuir; 2014 Dec; 30(47):14128-42. PubMed ID: 24849281 [TBL] [Abstract][Full Text] [Related]
4. Insights into organogelation and its kinetics from Hansen solubility parameters. Toward a priori predictions of molecular gelation. Diehn KK; Oh H; Hashemipour R; Weiss RG; Raghavan SR Soft Matter; 2014 Apr; 10(15):2632-40. PubMed ID: 24647411 [TBL] [Abstract][Full Text] [Related]
5. Sustainable sorbitol-derived compounds for gelation of the full range of ethanol-water mixtures. Dizon GC; Atkinson G; Argent SP; Santu LT; Amabilino DB Soft Matter; 2020 May; 16(19):4640-4654. PubMed ID: 32373900 [TBL] [Abstract][Full Text] [Related]
6. Photopatterned Multidomain Gels: Multi-Component Self-Assembled Hydrogels Based on Partially Self-Sorting 1,3:2,4-Dibenzylidene-D-sorbitol Derivatives. Cornwell DJ; Daubney OJ; Smith DK J Am Chem Soc; 2015 Dec; 137(49):15486-92. PubMed ID: 26646708 [TBL] [Abstract][Full Text] [Related]
7. Self-assembly mechanism of 1,3:2,4-di(3,4-dichlorobenzylidene)-D-sorbitol and control of the supramolecular chirality. Li J; Fan K; Guan X; Yu Y; Song J Langmuir; 2014 Nov; 30(44):13422-9. PubMed ID: 25318070 [TBL] [Abstract][Full Text] [Related]
8. Self-Assembled Gels Formed in Deep Eutectic Solvents: Supramolecular Eutectogels with High Ionic Conductivity. Ruiz-Olles J; Slavik P; Whitelaw NK; Smith DK Angew Chem Int Ed Engl; 2019 Mar; 58(13):4173-4178. PubMed ID: 30682215 [TBL] [Abstract][Full Text] [Related]
10. Sequential Assembly of Mutually Interactive Supramolecular Hydrogels and Fabrication of Multi-Domain Materials. Piras CC; Smith DK Chemistry; 2019 Aug; 25(48):11318-11326. PubMed ID: 31237367 [TBL] [Abstract][Full Text] [Related]
11. Versatile supramolecular gelators that can harden water, organic solvents and ionic liquids. Minakuchi N; Hoe K; Yamaki D; Ten-no S; Nakashima K; Goto M; Mizuhata M; Maruyama T Langmuir; 2012 Jun; 28(25):9259-66. PubMed ID: 22650420 [TBL] [Abstract][Full Text] [Related]
12. Simulation of DBS, DBS-COOH, and DBS-CONHNH Knani D; Alperstein D J Phys Chem A; 2017 Feb; 121(5):1113-1120. PubMed ID: 28094942 [TBL] [Abstract][Full Text] [Related]
13. NMR characterization of the formation kinetics and structure of di-O-benzylidene sorbitol gels self-assembled in organic solvents. VanderHart DL; Douglas JF; Hudson SD; Antonucci JM; Wilder EA Langmuir; 2011 Mar; 27(5):1745-57. PubMed ID: 21247189 [TBL] [Abstract][Full Text] [Related]
14. Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Suzuki M; Hanabusa K Chem Soc Rev; 2010 Feb; 39(2):455-63. PubMed ID: 20111770 [TBL] [Abstract][Full Text] [Related]
15. Gelation of Oil upon Contact with Water: A Bioinspired Scheme for the Self-Repair of Oil Leaks from Underwater Tubes. Oh H; Yaraghi N; Raghavan SR Langmuir; 2015 May; 31(19):5259-64. PubMed ID: 25955654 [TBL] [Abstract][Full Text] [Related]
16. Tuning gelled lyotropic liquid crystals (LLCs) - probing the influence of different low molecular weight gelators on the phase diagram of the system H Steck K; van Esch JH; Smith DK; Stubenrauch C Soft Matter; 2019 Apr; 15(15):3111-3121. PubMed ID: 30758020 [TBL] [Abstract][Full Text] [Related]
17. Low-molecular-weight gelators: elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model. Hirst AR; Coates IA; Boucheteau TR; Miravet JF; Escuder B; Castelletto V; Hamley IW; Smith DK J Am Chem Soc; 2008 Jul; 130(28):9113-21. PubMed ID: 18558681 [TBL] [Abstract][Full Text] [Related]
18. Insights into low molecular mass organic gelators: a focus on drug delivery and tissue engineering applications. Skilling KJ; Citossi F; Bradshaw TD; Ashford M; Kellam B; Marlow M Soft Matter; 2014 Jan; 10(2):237-56. PubMed ID: 24651822 [TBL] [Abstract][Full Text] [Related]
19. Hybrid Self-Assembled Gel Beads for Tuneable pH-Controlled Rosuvastatin Delivery. Piras CC; Patterson AK; Smith DK Chemistry; 2021 Sep; 27(52):13203-13210. PubMed ID: 34346527 [TBL] [Abstract][Full Text] [Related]
20. Phenylalanine and derivatives as versatile low-molecular-weight gelators: design, structure and tailored function. Das T; Häring M; Haldar D; Díaz Díaz D Biomater Sci; 2017 Dec; 6(1):38-59. PubMed ID: 29164186 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]