These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
416 related articles for article (PubMed ID: 26017137)
1. A Comparison of ToxCast Test Results with In Vivo and Other In Vitro Endpoints for Neuro, Endocrine, and Developmental Toxicities: A Case Study Using Endosulfan and Methidathion. Silva M; Pham N; Lewis C; Iyer S; Kwok E; Solomon G; Zeise L Birth Defects Res B Dev Reprod Toxicol; 2015 Apr; 104(2):71-89. PubMed ID: 26017137 [TBL] [Abstract][Full Text] [Related]
2. Using ToxCast to Explore Chemical Activities and Hazard Traits: A Case Study With Ortho-Phthalates. Pham N; Iyer S; Hackett E; Lock BH; Sandy M; Zeise L; Solomon G; Marty M Toxicol Sci; 2016 Jun; 151(2):286-301. PubMed ID: 26969370 [TBL] [Abstract][Full Text] [Related]
3. An assessment of the developmental, reproductive, and neurotoxicity of endosulfan. Silva MH; Gammon D Birth Defects Res B Dev Reprod Toxicol; 2009 Feb; 86(1):1-28. PubMed ID: 19243027 [TBL] [Abstract][Full Text] [Related]
4. Zebrafish as potential model for developmental neurotoxicity testing: a mini review. de Esch C; Slieker R; Wolterbeek A; Woutersen R; de Groot D Neurotoxicol Teratol; 2012; 34(6):545-53. PubMed ID: 22971930 [TBL] [Abstract][Full Text] [Related]
5. Analysis of Pfizer compounds in EPA's ToxCast chemicals-assay space. Shah F; Greene N Chem Res Toxicol; 2014 Jan; 27(1):86-98. PubMed ID: 24328225 [TBL] [Abstract][Full Text] [Related]
6. Profiling the activity of environmental chemicals in prenatal developmental toxicity studies using the U.S. EPA's ToxRefDB. Knudsen TB; Martin MT; Kavlock RJ; Judson RS; Dix DJ; Singh AV Reprod Toxicol; 2009 Sep; 28(2):209-19. PubMed ID: 19446433 [TBL] [Abstract][Full Text] [Related]
7. Zebrafish: as an integrative model for twenty-first century toxicity testing. Sipes NS; Padilla S; Knudsen TB Birth Defects Res C Embryo Today; 2011 Sep; 93(3):256-67. PubMed ID: 21932434 [TBL] [Abstract][Full Text] [Related]
8. Effects of endosulfan on survival and development of Bombina orientalis (Boulenger) embryos. Kang HS; Gye MC; Kim MK Bull Environ Contam Toxicol; 2008 Sep; 81(3):262-5. PubMed ID: 18587519 [TBL] [Abstract][Full Text] [Related]
9. Multidimensional in vivo hazard assessment using zebrafish. Truong L; Reif DM; St Mary L; Geier MC; Truong HD; Tanguay RL Toxicol Sci; 2014 Jan; 137(1):212-33. PubMed ID: 24136191 [TBL] [Abstract][Full Text] [Related]
10. Developmental Effects of the ToxCast™ Phase I and Phase II Chemicals in Caenorhabditis elegans and Corresponding Responses in Zebrafish, Rats, and Rabbits. Boyd WA; Smith MV; Co CA; Pirone JR; Rice JR; Shockley KR; Freedman JH Environ Health Perspect; 2016 May; 124(5):586-93. PubMed ID: 26496690 [TBL] [Abstract][Full Text] [Related]
11. Endosulfan I and endosulfan sulfate disrupts zebrafish embryonic development. Stanley KA; Curtis LR; Simonich SL; Tanguay RL Aquat Toxicol; 2009 Dec; 95(4):355-61. PubMed ID: 19883949 [TBL] [Abstract][Full Text] [Related]
13. Endocrine profiling and prioritization of environmental chemicals using ToxCast data. Reif DM; Martin MT; Tan SW; Houck KA; Judson RS; Richard AM; Knudsen TB; Dix DJ; Kavlock RJ Environ Health Perspect; 2010 Dec; 118(12):1714-20. PubMed ID: 20826373 [TBL] [Abstract][Full Text] [Related]
14. In search of a comprehensible set of endpoints for the routine monitoring of neurotoxicity in vertebrates: sensory perception and nerve transmission in zebrafish (Danio rerio) embryos. Stengel D; Wahby S; Braunbeck T Environ Sci Pollut Res Int; 2018 Feb; 25(5):4066-4084. PubMed ID: 29022183 [TBL] [Abstract][Full Text] [Related]
15. Identification of vascular disruptor compounds by analysis in zebrafish embryos and mouse embryonic endothelial cells. McCollum CW; Conde-Vancells J; Hans C; Vazquez-Chantada M; Kleinstreuer N; Tal T; Knudsen T; Shah SS; Merchant FA; Finnell RH; Gustafsson JÅ; Cabrera R; Bondesson M Reprod Toxicol; 2017 Jun; 70():60-69. PubMed ID: 27838387 [TBL] [Abstract][Full Text] [Related]
16. Investigating open access new approach methods (NAM) to assess biological points of departure: A case study with 4 neurotoxic pesticides. Silva MH Curr Res Toxicol; 2024; 6():100156. PubMed ID: 38404712 [TBL] [Abstract][Full Text] [Related]
17. Comparative acute toxicities of selected pesticides to Anguilla anguilla. Ferrando MD; Sancho E; Andreu-Moliner E J Environ Sci Health B; 1991; 26(5-6):491-8. PubMed ID: 1723417 [TBL] [Abstract][Full Text] [Related]
18. Combined endosulfan and cypermethrin-induced toxicity to embryo-larval development of Rhinella arenarum. Svartz GV; Aronzon CM; Pérez Coll CS J Toxicol Environ Health A; 2016; 79(5):197-209. PubMed ID: 26914601 [TBL] [Abstract][Full Text] [Related]
19. Comparative endpoint sensitivity of in vitro estrogen agonist assays. Dreier DA; Connors KA; Brooks BW Regul Toxicol Pharmacol; 2015 Jul; 72(2):185-93. PubMed ID: 25896097 [TBL] [Abstract][Full Text] [Related]
20. Vitamin E reduces endosulfan-induced toxic effects on morphology and behavior in early development of zebrafish (Danio rerio). Dale K; Rasinger JD; Thorstensen KL; Penglase S; Ellingsen S Food Chem Toxicol; 2017 Mar; 101():84-93. PubMed ID: 28065758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]