BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1057 related articles for article (PubMed ID: 26017310)

  • 21. Mechanisms generating cancer genome complexity from a single cell division error.
    Umbreit NT; Zhang CZ; Lynch LD; Blaine LJ; Cheng AM; Tourdot R; Sun L; Almubarak HF; Judge K; Mitchell TJ; Spektor A; Pellman D
    Science; 2020 Apr; 368(6488):. PubMed ID: 32299917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The genomic characteristics and cellular origin of chromothripsis.
    Storchová Z; Kloosterman WP
    Curr Opin Cell Biol; 2016 Jun; 40():106-113. PubMed ID: 27023493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromosomes trapped in micronuclei are liable to segregation errors.
    Soto M; García-Santisteban I; Krenning L; Medema RH; Raaijmakers JA
    J Cell Sci; 2018 Jul; 131(13):. PubMed ID: 29930083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis.
    Terzoudi GI; Karakosta M; Pantelias A; Hatzi VI; Karachristou I; Pantelias G
    Mutat Res Genet Toxicol Environ Mutagen; 2015 Nov; 793():185-98. PubMed ID: 26520389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis.
    Ly P; Cleveland DW
    Trends Cell Biol; 2017 Dec; 27(12):917-930. PubMed ID: 28899600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlative Live Imaging and Immunofluorescence for Analysis of Chromosome Segregation in Mouse Preimplantation Embryos.
    Vázquez-Diez C; FitzHarris G
    Methods Mol Biol; 2018; 1769():319-335. PubMed ID: 29564833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromothripsis and DNA Repair Disorders.
    Nazaryan-Petersen L; Bjerregaard VA; Nielsen FC; Tommerup N; Tümer Z
    J Clin Med; 2020 Feb; 9(3):. PubMed ID: 32106411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Causes and consequences of micronuclei.
    Krupina K; Goginashvili A; Cleveland DW
    Curr Opin Cell Biol; 2021 Jun; 70():91-99. PubMed ID: 33610905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing.
    Leibowitz ML; Papathanasiou S; Doerfler PA; Blaine LJ; Sun L; Yao Y; Zhang CZ; Weiss MJ; Pellman D
    Nat Genet; 2021 Jun; 53(6):895-905. PubMed ID: 33846636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromoanagenesis, the mechanisms of a genomic chaos.
    Pellestor F; Gaillard JB; Schneider A; Puechberty J; Gatinois V
    Semin Cell Dev Biol; 2022 Mar; 123():90-99. PubMed ID: 33608210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Small but mighty: the causes and consequences of micronucleus rupture.
    Kwon M; Leibowitz ML; Lee JH
    Exp Mol Med; 2020 Nov; 52(11):1777-1786. PubMed ID: 33230251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome stability: Chromothripsis and micronucleus formation.
    Waldron D
    Nat Rev Genet; 2015 Jul; 16(7):376-7. PubMed ID: 26084493
    [No Abstract]   [Full Text] [Related]  

  • 33. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining.
    Ly P; Teitz LS; Kim DH; Shoshani O; Skaletsky H; Fachinetti D; Page DC; Cleveland DW
    Nat Cell Biol; 2017 Jan; 19(1):68-75. PubMed ID: 27918550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catastrophic Endgames: Emerging Mechanisms of Telomere-Driven Genomic Instability.
    Cleal K; Baird DM
    Trends Genet; 2020 May; 36(5):347-359. PubMed ID: 32294415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutational game changer: Chromothripsis and its emerging relevance to cancer.
    Luijten MNH; Lee JXT; Crasta KC
    Mutat Res Rev Mutat Res; 2018; 777():29-51. PubMed ID: 30115429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Beta Human Papillomavirus 8 E6 Induces Micronucleus Formation and Promotes Chromothripsis.
    Dacus D; Stancic S; Pollina SR; Rifrogiate E; Palinski R; Wallace NA
    J Virol; 2022 Oct; 96(19):e0101522. PubMed ID: 36129261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromothripsis, a credible chromosomal mechanism in evolutionary process.
    Pellestor F; Gatinois V
    Chromosoma; 2019 Mar; 128(1):1-6. PubMed ID: 30088093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transient multifocal genomic crisis creating chromothriptic and non-chromothriptic rearrangements in prezygotic testicular germ cells.
    Hattori A; Okamura K; Terada Y; Tanaka R; Katoh-Fukui Y; Matsubara Y; Matsubara K; Kagami M; Horikawa R; Fukami M
    BMC Med Genomics; 2019 May; 12(1):77. PubMed ID: 31138192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system.
    Morishita M; Muramatsu T; Suto Y; Hirai M; Konishi T; Hayashi S; Shigemizu D; Tsunoda T; Moriyama K; Inazawa J
    Oncotarget; 2016 Mar; 7(9):10182-92. PubMed ID: 26862731
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromothripsis, DNA repair and checkpoints defects.
    Simovic M; Ernst A
    Semin Cell Dev Biol; 2022 Mar; 123():110-114. PubMed ID: 33589336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 53.