These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26017624)

  • 1. Learning-guided automatic three dimensional synapse quantification for drosophila neurons.
    Sanders J; Singh A; Sterne G; Ye B; Zhou J
    BMC Bioinformatics; 2015 May; 16():177. PubMed ID: 26017624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BIOCAT: a pattern recognition platform for customizable biological image classification and annotation.
    Zhou J; Lamichhane S; Sterne G; Ye B; Peng H
    BMC Bioinformatics; 2013 Oct; 14():291. PubMed ID: 24090164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic Morphological Reconstruction of Neurons from Multiphoton and Confocal Microscopy Images Using 3D Tubular Models.
    Santamaría-Pang A; Hernandez-Herrera P; Papadakis M; Saggau P; Kakadiaris IA
    Neuroinformatics; 2015 Jul; 13(3):297-320. PubMed ID: 25631538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An intelligent workflow for sub-nanoscale 3D reconstruction of intact synapses from serial section electron tomography.
    Chang S; Li L; Hong B; Liu J; Xu Y; Pang K; Zhang L; Han H; Chen X
    BMC Biol; 2023 Sep; 21(1):198. PubMed ID: 37743470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective automated pipeline for 3D reconstruction of synapses based on deep learning.
    Xiao C; Li W; Deng H; Chen X; Yang Y; Xie Q; Han H
    BMC Bioinformatics; 2018 Jul; 19(1):263. PubMed ID: 30005590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-automatic 3D morphological reconstruction of neurons with densely branching morphology: Application to retinal AII amacrine cells imaged with multi-photon excitation microscopy.
    Zandt BJ; Losnegård A; Hodneland E; Veruki ML; Lundervold A; Hartveit E
    J Neurosci Methods; 2017 Mar; 279():101-118. PubMed ID: 28115187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of presynaptic inputs on dendrites of individually labeled neurons in three dimensional space using a center distance algorithm.
    Ausdenmoore BD; Markwell ZA; Ladle DR
    J Neurosci Methods; 2011 Sep; 200(2):129-43. PubMed ID: 21736898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for estimating relative changes in the synaptic density in Drosophila central nervous system.
    Rai D; Dey S; Ray K
    BMC Neurosci; 2018 May; 19(1):30. PubMed ID: 29769037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated three-dimensional detection and counting of neuron somata.
    Oberlaender M; Dercksen VJ; Egger R; Gensel M; Sakmann B; Hege HC
    J Neurosci Methods; 2009 May; 180(1):147-60. PubMed ID: 19427542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic organization of lobula plate tangential cells in Drosophila: Dalpha7 cholinergic receptors.
    Raghu SV; Joesch M; Sigrist SJ; Borst A; Reiff DF
    J Neurogenet; 2009; 23(1-2):200-9. PubMed ID: 19306209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated quantification of synaptic fluorescence in C. elegans.
    Sturt BL; Bamber BA
    J Vis Exp; 2012 Aug; (66):. PubMed ID: 22907390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-scale segmentation of neurons based on one-class classification.
    Hernandez-Herrera P; Papadakis M; Kakadiaris IA
    J Neurosci Methods; 2016 Jun; 266():94-106. PubMed ID: 27038663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of genes regulating stimulus-dependent synaptic assembly in Drosophila using an automated synapse quantification system.
    Osaka J; Yasuda H; Watanuki Y; Kato Y; Nitta Y; Sugie A; Sato M; Suzuki T
    Genes Genet Syst; 2023 Apr; 97(6):297-309. PubMed ID: 36878557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colocalization of synapse marker proteins evaluated by STED-microscopy reveals patterns of neuronal synapse distribution in vitro.
    Dzyubenko E; Rozenberg A; Hermann DM; Faissner A
    J Neurosci Methods; 2016 Nov; 273():149-159. PubMed ID: 27615741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated quantification of synapses by fluorescence microscopy.
    Schätzle P; Wuttke R; Ziegler U; Sonderegger P
    J Neurosci Methods; 2012 Feb; 204(1):144-149. PubMed ID: 22108140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rivulet: 3D Neuron Morphology Tracing with Iterative Back-Tracking.
    Liu S; Zhang D; Liu S; Feng D; Peng H; Cai W
    Neuroinformatics; 2016 Oct; 14(4):387-401. PubMed ID: 27184384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive and Background-Aware GAL4 Expression Enhancement of Co-registered Confocal Microscopy Images.
    Trapp M; Schulze F; Novikov AA; Tirian L; J Dickson B; Bühler K
    Neuroinformatics; 2016 Apr; 14(2):221-33. PubMed ID: 26743993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic path searching for automatic neuron reconstruction.
    Xie J; Zhao T; Lee T; Myers E; Peng H
    Med Image Anal; 2011 Oct; 15(5):680-9. PubMed ID: 21669547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated analysis of spine dynamics on live CA1 pyramidal cells.
    Blumer C; Vivien C; Genoud C; Perez-Alvarez A; Wiegert JS; Vetter T; Oertner TG
    Med Image Anal; 2015 Jan; 19(1):87-97. PubMed ID: 25299432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.