These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26017854)

  • 1. The rate constant of the reaction NCN + H2 and its role in NCN and NO modeling in low pressure CH4/O2/N2-flames.
    Faßheber N; Lamoureux N; Friedrichs G
    Phys Chem Chem Phys; 2015 Jun; 17(24):15876-86. PubMed ID: 26017854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Reaction NCN + H
    Faßheber N; Bornhorst L; Hesse S; Sakai Y; Friedrichs G
    J Phys Chem A; 2020 Jun; 124(23):4632-4645. PubMed ID: 32396349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct measurements of the total rate constant of the reaction NCN + H and implications for the product branching ratio and the enthalpy of formation of NCN.
    Fassheber N; Dammeier J; Friedrichs G
    Phys Chem Chem Phys; 2014 Jun; 16(23):11647-57. PubMed ID: 24807121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct measurements of the high temperature rate constants of the reactions NCN + O, NCN + NCN, and NCN + M.
    Dammeier J; Fassheber N; Friedrichs G
    Phys Chem Chem Phys; 2012 Jan; 14(2):1030-7. PubMed ID: 21879071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct measurements of the rate constants of the reactions NCN + NO and NCN + NO2 behind shock waves.
    Dammeier J; Friedrichs G
    J Phys Chem A; 2011 Dec; 115(50):14382-90. PubMed ID: 22066522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal Decomposition of NCN: Shock-Tube Study, Quantum Chemical Calculations, and Master-Equation Modeling.
    Busch A; González-García N; Lendvay G; Olzmann M
    J Phys Chem A; 2015 Jul; 119(28):7838-46. PubMed ID: 25853321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal decomposition of NCN(3) as a high-temperature NCN radical source: singlet-triplet relaxation and absorption cross section of NCN((3)Σ).
    Dammeier J; Friedrichs G
    J Phys Chem A; 2010 Dec; 114(50):12963-71. PubMed ID: 21126010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shock tube study of the reaction of CH with N2: overall rate and branching ratio.
    Vasudevan V; Hanson RK; Bowman CT; Golden DM; Davidson DF
    J Phys Chem A; 2007 Nov; 111(46):11818-30. PubMed ID: 17958405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of the NCN + NO reaction over a broad temperature and pressure range.
    Welz O; Olzmann M
    J Phys Chem A; 2012 Jul; 116(27):7293-301. PubMed ID: 22694482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio chemical kinetics for H + NCN: prediction of NCN heat of formation and reaction product branching via doublet and quartet surfaces.
    Teng WS; Moskaleva LV; Chen HL; Lin MC
    J Phys Chem A; 2013 Jul; 117(28):5775-84. PubMed ID: 23755876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-temperature shock tube measurements of methyl radical decomposition.
    Vasudevan V; Hanson RK; Golden DM; Bowman CT; Davidson DF
    J Phys Chem A; 2007 May; 111(19):4062-72. PubMed ID: 17388279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio study on the oxidation of NCN by OH: prediction of the individual and total rate constants.
    Zhu RS; Nguyen HM; Lin MC
    J Phys Chem A; 2009 Jan; 113(1):298-304. PubMed ID: 19061343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High temperature shock tube and theoretical studies on the thermal decomposition of dimethyl carbonate and its bimolecular reactions with H and D-atoms.
    Peukert SL; Sivaramakrishnan R; Michael JV
    J Phys Chem A; 2013 May; 117(18):3718-28. PubMed ID: 23510116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the kinetics and yields of OH radical production from the CH3OCH2 + O2 reaction in the temperature range 195-650 K: an experimental and computational study.
    Eskola AJ; Carr SA; Shannon RJ; Wang B; Blitz MA; Pilling MJ; Seakins PW; Robertson SH
    J Phys Chem A; 2014 Aug; 118(34):6773-88. PubMed ID: 25069059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactions of SO3 with the O/H radical pool under combustion conditions.
    Hindiyarti L; Glarborg P; Marshall P
    J Phys Chem A; 2007 May; 111(19):3984-91. PubMed ID: 17388335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct measurements of rate constants for the reactions of CH3 radicals with C2H6, C2H4, and C2H2 at high temperatures.
    Peukert SL; Labbe NJ; Sivaramakrishnan R; Michael JV
    J Phys Chem A; 2013 Oct; 117(40):10228-38. PubMed ID: 23968575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room temperature and shock tube study of the reaction HCO+O2 using the photolysis of glyoxal as an efficient HCO source.
    Colberg M; Friedrichs G
    J Phys Chem A; 2006 Jan; 110(1):160-70. PubMed ID: 16392851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rate coefficients and equilibrium constant for the CH2CHO + O2 reaction system.
    Delbos E; Fittschen C; Hippler H; Krasteva N; Olzmann M; Viskolcz B
    J Phys Chem A; 2006 Mar; 110(9):3238-45. PubMed ID: 16509648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chain reaction mechanism in hydrogen/fluorine combustion.
    Matsugi A; Shiina H; Tsuchiya K; Miyoshi A
    J Phys Chem A; 2013 Dec; 117(51):14042-7. PubMed ID: 24289851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glyoxal Oxidation Mechanism: Implications for the Reactions HCO + O2 and OCHCHO + HO2.
    Faßheber N; Friedrichs G; Marshall P; Glarborg P
    J Phys Chem A; 2015 Jul; 119(28):7305-15. PubMed ID: 25611968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.