These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 26018081)
1. Histidine 114 Is Critical for ATP Hydrolysis by the Universally Conserved ATPase YchF. Rosler KS; Mercier E; Andrews IC; Wieden HJ J Biol Chem; 2015 Jul; 290(30):18650-61. PubMed ID: 26018081 [TBL] [Abstract][Full Text] [Related]
2. The 70S ribosome modulates the ATPase activity of Escherichia coli YchF. Becker M; Gzyl KE; Altamirano AM; Vuong A; Urban K; Wieden HJ RNA Biol; 2012 Oct; 9(10):1288-301. PubMed ID: 22995830 [TBL] [Abstract][Full Text] [Related]
3. Deciphering the catalytic machinery in a universally conserved ribosome binding ATPase YchF. Tomar SK; Kumar P; Prakash B Biochem Biophys Res Commun; 2011 May; 408(3):459-64. PubMed ID: 21527254 [TBL] [Abstract][Full Text] [Related]
4. Redox Activation of the Universally Conserved ATPase YchF by Thioredoxin 1. Hannemann L; Suppanz I; Ba Q; MacInnes K; Drepper F; Warscheid B; Koch HG Antioxid Redox Signal; 2016 Jan; 24(3):141-56. PubMed ID: 26160547 [TBL] [Abstract][Full Text] [Related]
5. Human OLA1 defines an ATPase subfamily in the Obg family of GTP-binding proteins. Koller-Eichhorn R; Marquardt T; Gail R; Wittinghofer A; Kostrewa D; Kutay U; Kambach C J Biol Chem; 2007 Jul; 282(27):19928-37. PubMed ID: 17430889 [TBL] [Abstract][Full Text] [Related]
6. YjeQ, an essential, conserved, uncharacterized protein from Escherichia coli, is an unusual GTPase with circularly permuted G-motifs and marked burst kinetics. Daigle DM; Rossi L; Berghuis AM; Aravind L; Koonin EV; Brown ED Biochemistry; 2002 Sep; 41(37):11109-17. PubMed ID: 12220175 [TBL] [Abstract][Full Text] [Related]
7. A universally conserved ATPase regulates the oxidative stress response in Escherichia coli. Wenk M; Ba Q; Erichsen V; MacInnes K; Wiese H; Warscheid B; Koch HG J Biol Chem; 2012 Dec; 287(52):43585-98. PubMed ID: 23139412 [TBL] [Abstract][Full Text] [Related]
8. Reformulation of an extant ATPase active site to mimic ancestral GTPase activity reveals a nucleotide base requirement for function. Updegrove TB; Harke J; Anantharaman V; Yang J; Gopalan N; Wu D; Piszczek G; Stevenson DM; Amador-Noguez D; Wang JD; Aravind L; Ramamurthi KS Elife; 2021 Mar; 10():. PubMed ID: 33704064 [TBL] [Abstract][Full Text] [Related]
9. The KdpC subunit of the Escherichia coli K+-transporting KdpB P-type ATPase acts as a catalytic chaperone. Irzik K; Pfrötzschner J; Goss T; Ahnert F; Haupt M; Greie JC FEBS J; 2011 Sep; 278(17):3041-53. PubMed ID: 21711450 [TBL] [Abstract][Full Text] [Related]
10. When an ATPase is not an ATPase: at low temperatures the C-terminal domain of the ABC transporter CvaB is a GTPase. Zhong X; Tai PC J Bacteriol; 1998 Mar; 180(6):1347-53. PubMed ID: 9515899 [TBL] [Abstract][Full Text] [Related]
11. The universally conserved GTPase HflX is an RNA helicase that restores heat-damaged Dey S; Biswas C; Sengupta J J Cell Biol; 2018 Jul; 217(7):2519-2529. PubMed ID: 29930203 [TBL] [Abstract][Full Text] [Related]
12. The core domain of the tissue transglutaminase Gh hydrolyzes GTP and ATP. Iismaa SE; Chung L; Wu MJ; Teller DC; Yee VC; Graham RM Biochemistry; 1997 Sep; 36(39):11655-64. PubMed ID: 9305955 [TBL] [Abstract][Full Text] [Related]
13. Functional characterization and ATP-induced dimerization of the isolated ABC-domain of the haemolysin B transporter. Zaitseva J; Jenewein S; Wiedenmann A; Benabdelhak H; Holland IB; Schmitt L Biochemistry; 2005 Jul; 44(28):9680-90. PubMed ID: 16008353 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of the YchF protein reveals binding sites for GTP and nucleic acid. Teplyakov A; Obmolova G; Chu SY; Toedt J; Eisenstein E; Howard AJ; Gilliland GL J Bacteriol; 2003 Jul; 185(14):4031-7. PubMed ID: 12837776 [TBL] [Abstract][Full Text] [Related]
15. Structural insights into the GTPase domain of Escherichia coli MnmE protein. Monleón D; Martínez-Vicente M; Esteve V; Yim L; Prado S; Armengod ME; Celda B Proteins; 2007 Feb; 66(3):726-39. PubMed ID: 17143896 [TBL] [Abstract][Full Text] [Related]
16. Conserved motifs involved in ATP hydrolysis by MalT, a signal transduction ATPase with numerous domains from Escherichia coli. Marquenet E; Richet E J Bacteriol; 2010 Oct; 192(19):5181-91. PubMed ID: 20693326 [TBL] [Abstract][Full Text] [Related]
17. Cellular roles of the human Obg-like ATPase 1 (hOLA1) and its YchF homologs. Balasingam N; Brandon HE; Ross JA; Wieden HJ; Thakor N Biochem Cell Biol; 2020 Feb; 98(1):1-11. PubMed ID: 30742486 [TBL] [Abstract][Full Text] [Related]
18. Role of the insertion domain and the zinc-finger motif of Escherichia coli UvrA in damage recognition and ATP hydrolysis. Wagner K; Moolenaar GF; Goosen N DNA Repair (Amst); 2011 May; 10(5):483-96. PubMed ID: 21393072 [TBL] [Abstract][Full Text] [Related]
19. Molecular mechanism of bacterial Hsp90 pH-dependent ATPase activity. Jin Y; Hoxie RS; Street TO Protein Sci; 2017 Jun; 26(6):1206-1213. PubMed ID: 28383119 [TBL] [Abstract][Full Text] [Related]
20. Effects of mutagenesis in the switch I region and conserved arginines of Escherichia coli MnmE protein, a GTPase involved in tRNA modification. Martínez-Vicente M; Yim L; Villarroya M; Mellado M; Pérez-Payá E; Björk GR; Armengod ME J Biol Chem; 2005 Sep; 280(35):30660-70. PubMed ID: 15983041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]