BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26018082)

  • 1. Characterization of Leber Congenital Amaurosis-associated NMNAT1 Mutants.
    Sasaki Y; Margolin Z; Borgo B; Havranek JJ; Milbrandt J
    J Biol Chem; 2015 Jul; 290(28):17228-38. PubMed ID: 26018082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMNAT1 E257K variant, associated with Leber Congenital Amaurosis (LCA9), causes a mild retinal degeneration phenotype.
    Eblimit A; Zaneveld SA; Liu W; Thomas K; Wang K; Li Y; Mardon G; Chen R
    Exp Eye Res; 2018 Aug; 173():32-43. PubMed ID: 29674119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration.
    Koenekoop RK; Wang H; Majewski J; Wang X; Lopez I; Ren H; Chen Y; Li Y; Fishman GA; Genead M; Schwartzentruber J; Solanki N; Traboulsi EI; Cheng J; Logan CV; McKibbin M; Hayward BE; Parry DA; Johnson CA; Nageeb M; ; Poulter JA; Mohamed MD; Jafri H; Rashid Y; Taylor GR; Keser V; Mardon G; Xu H; Inglehearn CF; Fu Q; Toomes C; Chen R
    Nat Genet; 2012 Sep; 44(9):1035-9. PubMed ID: 22842230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMNAT1 mutations cause Leber congenital amaurosis.
    Falk MJ; Zhang Q; Nakamaru-Ogiso E; Kannabiran C; Fonseca-Kelly Z; Chakarova C; Audo I; Mackay DS; Zeitz C; Borman AD; Staniszewska M; Shukla R; Palavalli L; Mohand-Said S; Waseem NH; Jalali S; Perin JC; Place E; Ostrovsky J; Xiao R; Bhattacharya SS; Consugar M; Webster AR; Sahel JA; Moore AT; Berson EL; Liu Q; Gai X; Pierce EA
    Nat Genet; 2012 Sep; 44(9):1040-5. PubMed ID: 22842227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mouse Models of NMNAT1-Leber Congenital Amaurosis (LCA9) Recapitulate Key Features of the Human Disease.
    Greenwald SH; Charette JR; Staniszewska M; Shi LY; Brown SDM; Stone L; Liu Q; Hicks WL; Collin GB; Bowl MR; Krebs MP; Nishina PM; Pierce EA
    Am J Pathol; 2016 Jul; 186(7):1925-1938. PubMed ID: 27207593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SARM1 depletion rescues NMNAT1-dependent photoreceptor cell death and retinal degeneration.
    Sasaki Y; Kakita H; Kubota S; Sene A; Lee TJ; Ban N; Dong Z; Lin JB; Boye SL; DiAntonio A; Boye SE; Apte RS; Milbrandt J
    Elife; 2020 Oct; 9():. PubMed ID: 33107823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hidden Genetic Variation in LCA9-Associated Congenital Blindness Explained by 5'UTR Mutations and Copy-Number Variations of NMNAT1.
    Coppieters F; Todeschini AL; Fujimaki T; Baert A; De Bruyne M; Van Cauwenbergh C; Verdin H; Bauwens M; Ongenaert M; Kondo M; Meire F; Murakami A; Veitia RA; Leroy BP; De Baere E
    Hum Mutat; 2015 Dec; 36(12):1188-96. PubMed ID: 26316326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel compound heterozygous NMNAT1 variants associated with Leber congenital amaurosis.
    Siemiatkowska AM; van den Born LI; van Genderen MM; Bertelsen M; Zobor D; Rohrschneider K; van Huet RA; Nurohmah S; Klevering BJ; Kohl S; Faradz SM; Rosenberg T; den Hollander AI; Collin RW; Cremers FP
    Mol Vis; 2014; 20():753-9. PubMed ID: 24940029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of Nmnat1 in the survival of retinal progenitors through the regulation of pro-apoptotic gene expression via histone acetylation.
    Kuribayashi H; Baba Y; Iwagawa T; Arai E; Murakami A; Watanabe S
    Cell Death Dis; 2018 Aug; 9(9):891. PubMed ID: 30166529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exome sequencing identifies NMNAT1 mutations as a cause of Leber congenital amaurosis.
    Chiang PW; Wang J; Chen Y; Fu Q; Zhong J; Chen Y; Yi X; Wu R; Gan H; Shi Y; Chen Y; Barnett C; Wheaton D; Day M; Sutherland J; Heon E; Weleber RG; Gabriel LA; Cong P; Chuang K; Ye S; Sallum JM; Qi M
    Nat Genet; 2012 Sep; 44(9):972-4. PubMed ID: 22842231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical course of a Japanese girl with Leber congenital amaurosis associated with a novel nonsense pathogenic variant in
    Kayazawa T; Kuniyoshi K; Hatsukawa Y; Fujinami K; Yoshitake K; Tsunoda K; Shimojo H; Iwata T; Kusaka S
    Ophthalmic Genet; 2022 Jun; 43(3):400-408. PubMed ID: 35026968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Alu-mediated duplication in NMNAT1, involved in NAD biosynthesis, causes a novel syndrome, SHILCA, affecting multiple tissues and organs.
    Bedoni N; Quinodoz M; Pinelli M; Cappuccio G; Torella A; Nigro V; Testa F; Simonelli F; ; Corton M; Lualdi S; Lanza F; Morana G; Ayuso C; Di Rocco M; Filocamo M; Banfi S; Brunetti-Pierri N; Superti-Furga A; Rivolta C
    Hum Mol Genet; 2020 Aug; 29(13):2250-2260. PubMed ID: 32533184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical and genetic findings in a family with NMNAT1-associated Leber congenital amaurosis: case report and review of the literature.
    Hedergott A; Volk AE; Herkenrath P; Thiele H; Fricke J; Altmüller J; Nürnberg P; Kubisch C; Neugebauer A
    Graefes Arch Clin Exp Ophthalmol; 2015 Dec; 253(12):2239-46. PubMed ID: 26464178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMNAT1 and hereditary spastic paraplegia (HSP): expanding the phenotypic spectrum of NMNAT1 variants.
    Sadr Z; Ghasemi A; Rohani M; Alavi A
    Neuromuscul Disord; 2023 Apr; 33(4):295-301. PubMed ID: 36871412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations in NMNAT1 cause Leber congenital amaurosis with early-onset severe macular and optic atrophy.
    Perrault I; Hanein S; Zanlonghi X; Serre V; Nicouleau M; Defoort-Delhemmes S; Delphin N; Fares-Taie L; Gerber S; Xerri O; Edelson C; Goldenberg A; Duncombe A; Le Meur G; Hamel C; Silva E; Nitschke P; Calvas P; Munnich A; Roche O; Dollfus H; Kaplan J; Rozet JM
    Nat Genet; 2012 Sep; 44(9):975-7. PubMed ID: 22842229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Insights on the Genetic Basis Underlying SHILCA Syndrome: Characterization of the
    Abad-Morales V; Wert A; Ruiz Gómez MÁ; Navarro R; Pomares E
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33668384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss-of-function approach using mouse retinal explants showed pivotal roles of Nmnat2 in early and middle stages of retinal development.
    Kuribayashi H; Katahira M; Aihara M; Suzuki Y; Watanabe S
    Mol Biol Cell; 2023 Jan; 34(1):ar4. PubMed ID: 36322391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutant Nmnat1 leads to a retina-specific decrease of NAD+ accompanied by increased poly(ADP-ribose) in a mouse model of NMNAT1-associated retinal degeneration.
    Greenwald SH; Brown EE; Scandura MJ; Hennessey E; Farmer R; Du J; Wang Y; Pierce EA
    Hum Mol Genet; 2021 May; 30(8):644-657. PubMed ID: 33709122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonpenetrance of the most frequent autosomal recessive leber congenital amaurosis mutation in NMNAT1.
    Siemiatkowska AM; Schuurs-Hoeijmakers JH; Bosch DG; Boonstra FN; Riemslag FC; Ruiter M; de Vries BB; den Hollander AI; Collin RW; Cremers FP
    JAMA Ophthalmol; 2014 Aug; 132(8):1002-4. PubMed ID: 24830548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide.
    Sasaki Y; Vohra BP; Lund FE; Milbrandt J
    J Neurosci; 2009 Apr; 29(17):5525-35. PubMed ID: 19403820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.