BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26018343)

  • 1. Conversion of Isoflavone Glucosides to Aglycones by Partially Purified β-Glucosidases from Microbial and Vegetable Sources.
    Fujita A; Alencar SM; Park YK
    Appl Biochem Biotechnol; 2015 Jul; 176(6):1659-72. PubMed ID: 26018343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing time and temperature of enzymatic conversion of isoflavone glucosides to aglycones in soy germ flour.
    Tipkanon S; Chompreeda P; Haruthaithanasan V; Suwonsichon T; Prinyawiwatkul W; Xu Z
    J Agric Food Chem; 2010 Nov; 58(21):11340-5. PubMed ID: 20942463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a novel β-glucosidase from Gongronella sp. W5 and its application in the hydrolysis of soybean isoflavone glycosides.
    Fang W; Song R; Zhang X; Zhang X; Zhang X; Wang X; Fang Z; Xiao Y
    J Agric Food Chem; 2014 Dec; 62(48):11688-95. PubMed ID: 25389558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterologous expression of a GH3 β-glucosidase from Neurospora crassa in Pichia pastoris with high purity and its application in the hydrolysis of soybean isoflavone glycosides.
    Pei X; Zhao J; Cai P; Sun W; Ren J; Wu Q; Zhang S; Tian C
    Protein Expr Purif; 2016 Mar; 119():75-84. PubMed ID: 26596358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enrichment of two isoflavone aglycones in black soymilk by using spent coffee grounds as an immobiliser for β-glucosidase.
    Chen KI; Lo YC; Liu CW; Yu RC; Chou CC; Cheng KC
    Food Chem; 2013 Aug; 139(1-4):79-85. PubMed ID: 23561081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soymilk processing with higher isoflavone aglycone content.
    Baú TR; Ida EI
    Food Chem; 2015 Sep; 183():161-8. PubMed ID: 25863624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution profiles of isoflavone isomers in black bean kojis prepared with various filamentous fungi.
    Lee IH; Chou CC
    J Agric Food Chem; 2006 Feb; 54(4):1309-14. PubMed ID: 16478253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning and characterization of a novel β-glucosidase with high hydrolyzing ability for soybean isoflavone glycosides and glucose-tolerance from soil metagenomic library.
    Li G; Jiang Y; Fan XJ; Liu YH
    Bioresour Technol; 2012 Nov; 123():15-22. PubMed ID: 22940294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria.
    Chun J; Kim GM; Lee KW; Choi ID; Kwon GH; Park JY; Jeong SJ; Kim JS; Kim JH
    J Food Sci; 2007 Mar; 72(2):M39-44. PubMed ID: 17995840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacillus velezensis S141, a soybean growth-promoting bacterium, hydrolyzes isoflavone glycosides into aglycones.
    Kondo T; Sibponkrung S; Hironao KY; Tittabutr P; Boonkerd N; Ishikawa S; Ashida H; Teaumroong N; Yoshida KI
    J Gen Appl Microbiol; 2023 Dec; 69(3):175-183. PubMed ID: 36858546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and enzymatic characterization of secretory glycoside hydrolase family 3 (GH3) aryl β-glucosidases screened from Aspergillus oryzae genome.
    Kudo K; Watanabe A; Ujiie S; Shintani T; Gomi K
    J Biosci Bioeng; 2015 Dec; 120(6):614-23. PubMed ID: 25936960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing dough proofing conditions to enhance isoflavone aglycones in soy bread.
    Riedl KM; Zhang YC; Schwartz SJ; Vodovotz Y
    J Agric Food Chem; 2005 Oct; 53(21):8253-8. PubMed ID: 16218672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study on isoflavone active aglycone preparation by immobilized beta-glucosidase from Aspergillus niger].
    Pan LH; Luo JP; Jiang ST
    Sheng Wu Gong Cheng Xue Bao; 2007 Nov; 23(6):1060-4. PubMed ID: 18257237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones.
    Yan FY; Xia W; Zhang XX; Chen S; Nie XZ; Qian LC
    J Zhejiang Univ Sci B; 2016 Jun; 17(6):455-64. PubMed ID: 27256679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus.
    Yeom SJ; Kim BN; Kim YS; Oh DK
    J Agric Food Chem; 2012 Feb; 60(6):1535-41. PubMed ID: 22251001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a β-glucosidase from Sulfolobus solfataricus for isoflavone glycosides.
    Kim BN; Yeom SJ; Kim YS; Oh DK
    Biotechnol Lett; 2012 Jan; 34(1):125-9. PubMed ID: 21898127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deglycosylation patterns of isoflavones in soybean extracts inoculated with two enzymatically different strains of lactobacillus species.
    Lim YJ; Lim B; Kim HY; Kwon SJ; Eom SH
    Enzyme Microb Technol; 2020 Jan; 132():109394. PubMed ID: 31731960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Residues affecting hydrolysis of soy isoflavone glycosides, stability and catalytic properties of Thermotoga maritime β-glucosidase].
    Xue Y; Song X; Sun H; Cao Z
    Prikl Biokhim Mikrobiol; 2013; 49(5):457-66. PubMed ID: 25474868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Thermostable GH3
    Li X; Xia W; Bai Y; Ma R; Yang H; Luo H; Shi P
    Biomed Res Int; 2018; 2018():4794690. PubMed ID: 30426008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoflavone phytoestrogen degradation in fermented soymilk with selected beta-glucosidase producing L. acidophilus strains during storage at different temperatures.
    Otieno DO; Ashton JF; Shah NP
    Int J Food Microbiol; 2007 Apr; 115(1):79-88. PubMed ID: 17174431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.