These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2601855)

  • 1. The effect of temperature on electrical interactions between antidromically stimulated frog motoneurons and dorsal root afferent axons.
    Cruzblanca H; Alvarez-Leefmans FJ
    Neuroscience; 1989; 33(1):193-201. PubMed ID: 2601855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of some divalent cations on synaptic transmission in frog spinal neurones.
    Alvarez-Leefmans FJ; De Santis A; Miledi R
    J Physiol; 1979 Sep; 294():387-406. PubMed ID: 229215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in motoneuron membrane potential and reflex activity induced by sudden cooling of isolated spinal cords: differences among cold-sensitive, cold-resistant and freeze-tolerant amphibian species.
    Daló NL; Hackman JC; Storey K; Davidoff RA
    J Exp Biol; 1995 Aug; 198(Pt 8):1765-74. PubMed ID: 7636445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of post-synaptic excitation in amphibian motoneurones.
    Shapovalov AI; Shiriaev BI; Velumian AA
    J Physiol; 1978 Jun; 279():437-55. PubMed ID: 209178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The organization of primary afferent depolarization in the isolated spinal cord of the frog.
    Carpenter DO; Rudomin P
    J Physiol; 1973 Mar; 229(2):471-93. PubMed ID: 4541991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitatory postsynaptic potentials evoked by ventral root stimulation in neonate rat motoneurons in vitro.
    Jiang ZG; Shen E; Wang MY; Dun NJ
    J Neurophysiol; 1991 Jan; 65(1):57-66. PubMed ID: 1999732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical interaction between antidromically stimulated frog motoneurones and dorsal root afferents: enhancement by gallamine and TEA.
    Grinnell AD
    J Physiol; 1970 Sep; 210(1):17-43. PubMed ID: 5500776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antidromic discharges of dorsal root afferents and inhibition of the lumbar monosynaptic reflex in the neonatal rat.
    Vinay L; Clarac F
    Neuroscience; 1999 Apr; 90(1):165-76. PubMed ID: 10188943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitatory and inhibitory transmission from dorsal root afferents to neonate rat motoneurons in vitro.
    Jiang ZG; Shen E; Dun NJ
    Brain Res; 1990 Dec; 535(1):110-8. PubMed ID: 1963341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The development of sensorimotor synaptic connections in the lumbosacral cord of the chick embryo.
    Lee MT; Koebbe MJ; O'Donovan MJ
    J Neurosci; 1988 Jul; 8(7):2530-43. PubMed ID: 3249241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of gallamine on field and dorsal root potentials produced by antidromic stimulation of motor fibres in the frog spinal cord.
    Galindo J; Rudomin P
    Exp Brain Res; 1978 May; 32(1):135-50. PubMed ID: 658184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of the interaction between motoneurones in the frog spinal cord.
    Grinnell AD
    J Physiol; 1966 Feb; 182(3):612-48. PubMed ID: 5943003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unexpected features of the interaction between individual primary afferents and spinal motoneurones.
    Shapovalov AI; Shiriaev BI
    Experientia; 1979 Mar; 35(3):347-8. PubMed ID: 446611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serotonin1A facilitation of frog motoneuron responses to afferent stimuli and to N-methyl-D-aspartate.
    Holohean AM; Hackman JC; Shope SB; Davidoff RA
    Neuroscience; 1992; 48(2):469-77. PubMed ID: 1351269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of cooling on latency of monosynaptic discharges evoked in motoneurons of the frog.
    Tegzes-Dezsö G; Czéh G
    Acta Biochim Biophys Acad Sci Hung; 1981; 16(1-2):95-100. PubMed ID: 6977981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual mode of junctional transmission at synapses between single primary afferent fibres and motoneurones in the amphibian.
    Shapovalov AI; Shiriaev BI
    J Physiol; 1980 Sep; 306():1-15. PubMed ID: 6257893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repetitive stimulation induced potentiation of excitatory transmission in the rat dorsal horn: an in vitro study.
    Jeftinija S; Urban L
    J Neurophysiol; 1994 Jan; 71(1):216-28. PubMed ID: 7908954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence supporting the indirect depolarization of primary afferent terminals in the frog by excitatory amino acids.
    Evans RH
    J Physiol; 1980 Jan; 298():25-35. PubMed ID: 6965722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depression of primary afferent-evoked responses by GR71251 in the isolated spinal cord of the neonatal rat.
    Guo JZ; Yoshioka K; Yanagisawa M; Hosoki R; Hagan RM; Otsuka M
    Br J Pharmacol; 1993 Nov; 110(3):1142-8. PubMed ID: 7507777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Firing of spinal motoneurones due to electrical interaction in the rat: an in vitro study.
    Arasaki K; Kudo N; Nakanishi T
    Exp Brain Res; 1984; 54(3):437-45. PubMed ID: 6723863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.