BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

511 related articles for article (PubMed ID: 26018646)

  • 1. Inhibitory receptors as targets for cancer immunotherapy.
    Turnis ME; Andrews LP; Vignali DA
    Eur J Immunol; 2015 Jul; 45(7):1892-905. PubMed ID: 26018646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas.
    Zhou G; Sprengers D; Boor PPC; Doukas M; Schutz H; Mancham S; Pedroza-Gonzalez A; Polak WG; de Jonge J; Gaspersz M; Dong H; Thielemans K; Pan Q; IJzermans JNM; Bruno MJ; Kwekkeboom J
    Gastroenterology; 2017 Oct; 153(4):1107-1119.e10. PubMed ID: 28648905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LAG3 (CD223) as a cancer immunotherapy target.
    Andrews LP; Marciscano AE; Drake CG; Vignali DA
    Immunol Rev; 2017 Mar; 276(1):80-96. PubMed ID: 28258692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CTLA-4 and PD-1 Control of T-Cell Motility and Migration: Implications for Tumor Immunotherapy.
    Brunner-Weinzierl MC; Rudd CE
    Front Immunol; 2018; 9():2737. PubMed ID: 30542345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules.
    Zhou G; Sprengers D; Mancham S; Erkens R; Boor PPC; van Beek AA; Doukas M; Noordam L; Campos Carrascosa L; de Ruiter V; van Leeuwen RWF; Polak WG; de Jonge J; Groot Koerkamp B; van Rosmalen B; van Gulik TM; Verheij J; IJzermans JNM; Bruno MJ; Kwekkeboom J
    J Hepatol; 2019 Oct; 71(4):753-762. PubMed ID: 31195061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity.
    Kumar P; Bhattacharya P; Prabhakar BS
    J Autoimmun; 2018 Dec; 95():77-99. PubMed ID: 30174217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the checkpoint blockade in lung cancer immunotherapy.
    Dal Bello MG; Alama A; Coco S; Vanni I; Grossi F
    Drug Discov Today; 2017 Aug; 22(8):1266-1273. PubMed ID: 28600190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coinhibitory Pathways in Immunotherapy for Cancer.
    Baumeister SH; Freeman GJ; Dranoff G; Sharpe AH
    Annu Rev Immunol; 2016 May; 34():539-73. PubMed ID: 26927206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concurrent OX40 and CD30 Ligand Blockade Abrogates the CD4-Driven Autoimmunity Associated with CTLA4 and PD1 Blockade while Preserving Excellent Anti-CD8 Tumor Immunity.
    Nawaf MG; Ulvmar MH; Withers DR; McConnell FM; Gaspal FM; Webb GJ; Jones ND; Yagita H; Allison JP; Lane PJL
    J Immunol; 2017 Aug; 199(3):974-981. PubMed ID: 28646041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Second- and third-generation drugs for immuno-oncology treatment-The more the better?
    Dempke WCM; Fenchel K; Uciechowski P; Dale SP
    Eur J Cancer; 2017 Mar; 74():55-72. PubMed ID: 28335888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Immune-checkpoints: the new anti-cancer immunotherapies].
    Ileana E; Champiat S; Soria JC
    Bull Cancer; 2013 Jun; 100(6):601-10. PubMed ID: 23735730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination cancer immunotherapy and new immunomodulatory targets.
    Mahoney KM; Rennert PD; Freeman GJ
    Nat Rev Drug Discov; 2015 Aug; 14(8):561-84. PubMed ID: 26228759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New checkpoints in cancer immunotherapy.
    Ni L; Dong C
    Immunol Rev; 2017 Mar; 276(1):52-65. PubMed ID: 28258699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy.
    Dougall WC; Kurtulus S; Smyth MJ; Anderson AC
    Immunol Rev; 2017 Mar; 276(1):112-120. PubMed ID: 28258695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recalling the Biological Significance of Immune Checkpoints on NK Cells: A Chance to Overcome LAG3, PD1, and CTLA4 Inhibitory Pathways by Adoptive NK Cell Transfer?
    Lanuza PM; Pesini C; Arias MA; Calvo C; Ramirez-Labrada A; Pardo J
    Front Immunol; 2019; 10():3010. PubMed ID: 31998304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Durable adoptive immunotherapy for leukemia produced by manipulation of multiple regulatory pathways of CD8+ T-cell tolerance.
    Berrien-Elliott MM; Jackson SR; Meyer JM; Rouskey CJ; Nguyen TL; Yagita H; Greenberg PD; DiPaolo RJ; Teague RM
    Cancer Res; 2013 Jan; 73(2):605-16. PubMed ID: 23188506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells.
    Kim N; Kim HS
    Front Immunol; 2018; 9():2041. PubMed ID: 30250471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy.
    Peggs KS; Quezada SA; Allison JP
    Immunol Rev; 2008 Aug; 224():141-65. PubMed ID: 18759925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Threshold Model for T-Cell Activation in the Era of Checkpoint Blockade Immunotherapy.
    Guram K; Kim SS; Wu V; Sanders PD; Patel S; Schoenberger SP; Cohen EEW; Chen SY; Sharabi AB
    Front Immunol; 2019; 10():491. PubMed ID: 30936880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The blockade of immune checkpoints in cancer immunotherapy.
    Pardoll DM
    Nat Rev Cancer; 2012 Mar; 12(4):252-64. PubMed ID: 22437870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.