These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
839 related articles for article (PubMed ID: 26018951)
1. Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation. El-Shishtawy RM; Mohamed SA; Asiri AM; Gomaa AB; Ibrahim IH; Al-Talhi HA BMC Biotechnol; 2015 May; 15():37. PubMed ID: 26018951 [TBL] [Abstract][Full Text] [Related]
2. Solid fermentation of wheat bran for hydrolytic enzymes production and saccharification content by a local isolate Bacillus megatherium. El-Shishtawy RM; Mohamed SA; Asiri AM; Gomaa AB; Ibrahim IH; Al-Talhi HA BMC Biotechnol; 2014 Apr; 14():29. PubMed ID: 24758479 [TBL] [Abstract][Full Text] [Related]
3. Solid state production of polygalacturonase and xylanase by Trichoderma species using cantaloupe and watermelon rinds. Mohamed SA; Al-Malki AL; Khan JA; Kabli SA; Al-Garni SM J Microbiol; 2013 Oct; 51(5):605-11. PubMed ID: 24037654 [TBL] [Abstract][Full Text] [Related]
4. Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Deswal D; Khasa YP; Kuhad RC Bioresour Technol; 2011 May; 102(10):6065-72. PubMed ID: 21470856 [TBL] [Abstract][Full Text] [Related]
5. Phytase production by Aspergillus oryzae in solid-state fermentation and its applicability in dephytinization of wheat bran [corrected]. Sapna ; Singh B Appl Biochem Biotechnol; 2014 Aug; 173(7):1885-95. PubMed ID: 24879597 [TBL] [Abstract][Full Text] [Related]
6. Cost-effective production of cellulose hydrolysing enzymes from Trichoderma sp. RCK65 under SSF and its evaluation in saccharification of cellulosic substrates. Chakraborty S; Gupta R; Jain KK; Kuhad RC Bioprocess Biosyst Eng; 2016 Nov; 39(11):1659-70. PubMed ID: 27344316 [TBL] [Abstract][Full Text] [Related]
7. Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Singhania RR; Sukumaran RK; Pandey A Appl Biochem Biotechnol; 2007 Jul; 142(1):60-70. PubMed ID: 18025569 [TBL] [Abstract][Full Text] [Related]
8. Optimization of solid state fermentation conditions for the production of cellulase by Trichoderma reesei. Maurya DP; Singh D; Pratap D; Maurya JP J Environ Biol; 2012 Jan; 33(1):5-8. PubMed ID: 23033636 [TBL] [Abstract][Full Text] [Related]
9. Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma asperellum UC1 under solid-state fermentation. Ezeilo UR; Lee CT; Huyop F; Zakaria II; Wahab RA J Environ Manage; 2019 Aug; 243():206-217. PubMed ID: 31096173 [TBL] [Abstract][Full Text] [Related]
10. Thermotolerant hemicellulolytic and cellulolytic enzymes from Eupenicillium parvum 4-14 display high efficiency upon release of ferulic acid from wheat bran. Long L; Ding D; Han Z; Zhao H; Lin Q; Ding S J Appl Microbiol; 2016 Aug; 121(2):422-34. PubMed ID: 27171788 [TBL] [Abstract][Full Text] [Related]
11. Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Idris ASO; Pandey A; Rao SS; Sukumaran RK Bioresour Technol; 2017 Oct; 242():265-271. PubMed ID: 28366693 [TBL] [Abstract][Full Text] [Related]
12. Horticultural waste as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation. Xin F; Geng A Appl Biochem Biotechnol; 2010 Sep; 162(1):295-306. PubMed ID: 19707729 [TBL] [Abstract][Full Text] [Related]
13. Enzymatic hydrolysis of pretreated Alfa fibers (Stipa tenacissima) using β-d-glucosidase and xylanase of Talaromyces thermophilus from solid-state fermentation. Mallek-Fakhfakh H; Fakhfakh J; Walha K; Hassairi H; Gargouri A; Belghith H Int J Biol Macromol; 2017 Oct; 103():543-553. PubMed ID: 28527996 [TBL] [Abstract][Full Text] [Related]
14. Simple one-step treatment for saccharification of mango peels using an optimized enzyme cocktail of Aspergillus niger ATCC 9642. Yupanqui-Mendoza SL; Sánchez-Moncada BJ; Las-Casas B; Castro-Alvarado ÁP Braz J Microbiol; 2024 Jun; 55(2):1151-1166. PubMed ID: 38472698 [TBL] [Abstract][Full Text] [Related]
15. Saccharification of Kans grass using enzyme mixture from Trichoderma reesei for bioethanol production. Kataria R; Ghosh S Bioresour Technol; 2011 Nov; 102(21):9970-5. PubMed ID: 21907576 [TBL] [Abstract][Full Text] [Related]
16. Agricultural wastes as substrates for β-glucosidase production by Talaromyces thermophilus: Role of these enzymes in enhancing waste paper saccharification. Mallek-Fakhfakh H; Fakhfakh J; Masmoudi N; Rezgui F; Gargouri A; Belghith H Prep Biochem Biotechnol; 2017 Apr; 47(4):414-423. PubMed ID: 27824279 [TBL] [Abstract][Full Text] [Related]
17. Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. Xu X; Lin M; Zang Q; Shi S Bioresour Technol; 2018 Jan; 247():88-95. PubMed ID: 28946099 [TBL] [Abstract][Full Text] [Related]
18. Production of xylanase under solid-state fermentation by Aspergillus tubingensis JP-1 and its application. Pandya JJ; Gupte A Bioprocess Biosyst Eng; 2012 Jun; 35(5):769-79. PubMed ID: 22271252 [TBL] [Abstract][Full Text] [Related]
19. Xylanase production from Bacillus aerophilus KGJ2 and its application in xylooligosaccharides preparation. Gowdhaman D; Manaswini VS; Jayanthi V; Dhanasri M; Jeyalakshmi G; Gunasekar V; Sugumaran KR; Ponnusami V Int J Biol Macromol; 2014 Mar; 64():90-8. PubMed ID: 24296408 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate. Tai WY; Tan JS; Lim V; Lee CK Biotechnol Prog; 2019 May; 35(3):e2781. PubMed ID: 30701709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]