These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 26019145)
1. Unsaturated fatty acids-dependent linkage between respiration and fermentation revealed by deletion of hypoxic regulatory KlMGA2 gene in the facultative anaerobe-respiratory yeast Kluyveromyces lactis. Ottaviano D; Montanari A; De Angelis L; Santomartino R; Visca A; Brambilla L; Rinaldi T; Bello C; Reverberi M; Bianchi MM FEMS Yeast Res; 2015 Aug; 15(5):fov028. PubMed ID: 26019145 [TBL] [Abstract][Full Text] [Related]
2. A dual signalling pathway for the hypoxic expression of lipid genes, dependent on the glucose sensor Rag4, is revealed by the analysis of the KlMGA2 gene in Kluyveromyces lactis. Micolonghi C; Ottaviano D; Di Silvio E; Damato G; Heipieper HJ; Bianchi MM Microbiology (Reading); 2012 Jul; 158(Pt 7):1734-1744. PubMed ID: 22516223 [TBL] [Abstract][Full Text] [Related]
3. The hypoxic transcription factor KlMga2 mediates the response to oxidative stress and influences longevity in the yeast Kluyveromyces lactis. Santomartino R; Camponeschi I; Polo G; Immesi A; Rinaldi T; Mazzoni C; Brambilla L; Bianchi MM FEMS Yeast Res; 2019 May; 19(3):. PubMed ID: 30810747 [TBL] [Abstract][Full Text] [Related]
4. The UPC2 gene in Kluyveromyces lactis stress adaptation. Betinova V; Toth Hervay N; Elias D; Horvathova A; Gbelska Y Folia Microbiol (Praha); 2022 Aug; 67(4):641-647. PubMed ID: 35352326 [TBL] [Abstract][Full Text] [Related]
5. Mutations of the RAG3 gene encoding a regulator of fermentation in Kluyveromyces lactis are suppressed by a mutation of the transcription factor gene KlGCR1. Tizzani L; Wésolowski-Louvel M; Forte V; Romitelli F; Salani F; Lemaire M; Neil H; Bianchi MM FEMS Yeast Res; 2007 Aug; 7(5):675-82. PubMed ID: 17559574 [TBL] [Abstract][Full Text] [Related]
6. Extrachromosomal genetics in the yeast Kluyveromyces lactis. Isolation and characterization of antimycin-resistant mutants. Brunner A; Mendoza V; Tuena de Cobos A Curr Genet; 1987; 11(6-7):475-82. PubMed ID: 3450410 [TBL] [Abstract][Full Text] [Related]
7. Regulation of glycolysis in Kluyveromyces lactis: role of KlGCR1 and KlGCR2 in glucose uptake and catabolism. Neil H; Lemaire M; Wésolowski-Louvel M Curr Genet; 2004 Mar; 45(3):129-39. PubMed ID: 14685765 [TBL] [Abstract][Full Text] [Related]
8. KlHsl1 is a component of glycerol response pathways in the milk yeast Kluyveromyces lactis. Cialfi S; Uccelletti D; Carducci A; Wésolowski-Louvel M; Mancini P; Heipieper HJ; Saliola M Microbiology (Reading); 2011 May; 157(Pt 5):1509-1518. PubMed ID: 21310785 [TBL] [Abstract][Full Text] [Related]
9. Functional roles of the fatty acid desaturases encoded by KlOLE1, FAD2 and FAD3 in the yeast Kluyveromyces lactis. De Angelis L; Rinaldi T; Cirigliano A; Bello C; Reverberi M; Amaretti A; Montanari A; Santomartino R; Raimondi S; Gonzalez A; Bianchi MM Microbiology (Reading); 2016 Aug; 162(8):1435-1445. PubMed ID: 27233577 [TBL] [Abstract][Full Text] [Related]
10. Deletion of the glucose-6-phosphate dehydrogenase gene KlZWF1 affects both fermentative and respiratory metabolism in Kluyveromyces lactis. Saliola M; Scappucci G; De Maria I; Lodi T; Mancini P; Falcone C Eukaryot Cell; 2007 Jan; 6(1):19-27. PubMed ID: 17085636 [TBL] [Abstract][Full Text] [Related]
11. The hypoxic expression of the glucose transporter RAG1 reveals the role of the bHLH transcription factor Sck1 as a novel hypoxic modulator in Kluyveromyces lactis. Santomartino R; Ottaviano D; Camponeschi I; Landicho TAA; Falato L; Visca A; Soulard A; Lemaire M; Bianchi MM FEMS Yeast Res; 2019 Jun; 19(4):. PubMed ID: 31210264 [TBL] [Abstract][Full Text] [Related]
12. Depletion of casein kinase I leads to a NAD(P)(+)/NAD(P)H balance-dependent metabolic adaptation as determined by NMR spectroscopy-metabolomic profile in Kluyveromyces lactis. Gorietti D; Zanni E; Palleschi C; Delfini M; Uccelletti D; Saliola M; Miccheli A Biochim Biophys Acta; 2014 Jan; 1840(1):556-64. PubMed ID: 24144565 [TBL] [Abstract][Full Text] [Related]
13. Oxygen-dependent transcriptional regulator Hap1p limits glucose uptake by repressing the expression of the major glucose transporter gene RAG1 in Kluyveromyces lactis. Bao WG; Guiard B; Fang ZA; Donnini C; Gervais M; Passos FM; Ferrero I; Fukuhara H; Bolotin-Fukuhara M Eukaryot Cell; 2008 Nov; 7(11):1895-905. PubMed ID: 18806211 [TBL] [Abstract][Full Text] [Related]
14. Two mitochondrial alcohol dehydrogenase activities of Kluyveromyces lactis are differently expressed during respiration and fermentation. Saliola M; Falcone C Mol Gen Genet; 1995 Dec; 249(6):665-72. PubMed ID: 8544832 [TBL] [Abstract][Full Text] [Related]
15. RAG1 and RAG2: nuclear genes involved in the dependence/independence on mitochondrial respiratory function for growth on sugars. Goffrini P; Algeri AA; Donnini C; Wesolowski-Louvel M; Ferrero I Yeast; 1989; 5(2):99-106. PubMed ID: 2711752 [TBL] [Abstract][Full Text] [Related]
16. Regulation of glycolysis by casein kinase I (Rag8p) in Kluyveromyces lactis involves a DNA-binding protein, Sck1p, a homologue of Sgc1p of Saccharomyces cerevisiae. Lemaire M; Guyon A; Betina S; Wésolowski-Louvel M Curr Genet; 2002 Mar; 40(6):355-64. PubMed ID: 11919674 [TBL] [Abstract][Full Text] [Related]
17. The inactivation of KlNOT4, a Kluyveromyces lactis gene encoding a component of the CCR4-NOT complex, reveals new regulatory functions. Mazzoni C; Serafini A; Falcone C Genetics; 2005 Jul; 170(3):1023-32. PubMed ID: 15879504 [TBL] [Abstract][Full Text] [Related]
18. HAP4, the glucose-repressed regulated subunit of the HAP transcriptional complex involved in the fermentation-respiration shift, has a functional homologue in the respiratory yeast Kluyveromyces lactis. Bourgarel D; Nguyen CC; Bolotin-Fukuhara M Mol Microbiol; 1999 Feb; 31(4):1205-15. PubMed ID: 10096087 [TBL] [Abstract][Full Text] [Related]
19. UPC2 gene deletion modifies sterol homeostasis and susceptibility to metabolic inhibitors in Kluyveromyces lactis. Toth Hervay N; Bencova A; Valachovic M; Morvova M; Gbelska Y Yeast; 2020 Dec; 37(12):647-657. PubMed ID: 33161613 [TBL] [Abstract][Full Text] [Related]
20. Fermentative metabolism impedes p53-dependent apoptosis in a Crabtree-positive but not in Crabtree-negative yeast. Kumar A; Dandekar JU; Bhat PJ J Biosci; 2017 Dec; 42(4):585-601. PubMed ID: 29229877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]