These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress. Liu C; Zhang X; Zhang K; An H; Hu K; Wen J; Shen J; Ma C; Yi B; Tu J; Fu T Int J Mol Sci; 2015 Aug; 16(8):18752-77. PubMed ID: 26270661 [TBL] [Abstract][Full Text] [Related]
4. Enhanced root system architecture in oilseed rape transformed with Rhizobium rhizogenes. Chen X; Favero BT; Liu F; Lütken H Plant Sci; 2024 Nov; 348():112209. PubMed ID: 39098395 [TBL] [Abstract][Full Text] [Related]
5. Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply. Wang X; Chen Y; Thomas CL; Ding G; Xu P; Shi D; Grandke F; Jin K; Cai H; Xu F; Yi B; Broadley MR; Shi L DNA Res; 2017 Aug; 24(4):407-417. PubMed ID: 28430897 [TBL] [Abstract][Full Text] [Related]
6. High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Shi L; Shi T; Broadley MR; White PJ; Long Y; Meng J; Xu F; Hammond JP Ann Bot; 2013 Jul; 112(2):381-9. PubMed ID: 23172414 [TBL] [Abstract][Full Text] [Related]
7. The Vascular Pathogen Verticillium longisporum Does Not Affect Water Relations and Plant Responses to Drought Stress of Its Host, Brassica napus. Lopisso DT; Knüfer J; Koopmann B; von Tiedemann A Phytopathology; 2017 Apr; 107(4):444-454. PubMed ID: 27992306 [TBL] [Abstract][Full Text] [Related]
8. Genotypic diversity and plasticity of root system architecture to nitrogen availability in oilseed rape. Lecarpentier C; Pagès L; Richard-Molard C PLoS One; 2021; 16(5):e0250966. PubMed ID: 34014943 [TBL] [Abstract][Full Text] [Related]
9. Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.). Hatzig SV; Nuppenau JN; Snowdon RJ; Schießl SV BMC Plant Biol; 2018 Nov; 18(1):297. PubMed ID: 30470194 [TBL] [Abstract][Full Text] [Related]
10. Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Yıldırım K; Yağcı A; Sucu S; Tunç S Plant Physiol Biochem; 2018 Jun; 127():256-268. PubMed ID: 29627732 [TBL] [Abstract][Full Text] [Related]
12. Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit. Thomas CL; Alcock TD; Graham NS; Hayden R; Matterson S; Wilson L; Young SD; Dupuy LX; White PJ; Hammond JP; Danku JM; Salt DE; Sweeney A; Bancroft I; Broadley MR BMC Plant Biol; 2016 Oct; 16(1):214. PubMed ID: 27716103 [TBL] [Abstract][Full Text] [Related]
13. Comparative proteome analysis of metabolic changes by low phosphorus stress in two Brassica napus genotypes. Yao Y; Sun H; Xu F; Zhang X; Liu S Planta; 2011 Mar; 233(3):523-37. PubMed ID: 21110039 [TBL] [Abstract][Full Text] [Related]
14. Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes. Dai L; Li J; Harmens H; Zheng X; Zhang C Plant Physiol Biochem; 2020 Apr; 149():86-95. PubMed ID: 32058897 [TBL] [Abstract][Full Text] [Related]
15. Root metaxylem and architecture phenotypes integrate to regulate water use under drought stress. Strock CF; Burridge JD; Niemiec MD; Brown KM; Lynch JP Plant Cell Environ; 2021 Jan; 44(1):49-67. PubMed ID: 32839986 [TBL] [Abstract][Full Text] [Related]
16. The miR169n-NF-YA8 regulation module involved in drought resistance in Brassica napus L. Li J; Duan Y; Sun N; Wang L; Feng S; Fang Y; Wang Y Plant Sci; 2021 Dec; 313():111062. PubMed ID: 34763855 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide survey and expression analyses of the GRAS gene family in Brassica napus reveals their roles in root development and stress response. Guo P; Wen J; Yang J; Ke Y; Wang M; Liu M; Ran F; Wu Y; Li P; Li J; Du H Planta; 2019 Oct; 250(4):1051-1072. PubMed ID: 31161396 [TBL] [Abstract][Full Text] [Related]
18. Molecular and Morpho-Agronomical Characterization of Root Architecture at Seedling and Reproductive Stages for Drought Tolerance in Wheat. Tomar RS; Tiwari S; Vinod ; Naik BK; Chand S; Deshmukh R; Mallick N; Singh S; Singh NK; Tomar SM PLoS One; 2016; 11(6):e0156528. PubMed ID: 27280445 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide transcriptional and physiological responses to drought stress in leaves and roots of two willow genotypes. Pucholt P; Sjödin P; Weih M; Rönnberg-Wästljung AC; Berlin S BMC Plant Biol; 2015 Oct; 15():244. PubMed ID: 26458893 [TBL] [Abstract][Full Text] [Related]
20. PEG-Induced Osmotic Stress Alters Root Morphology and Root Hair Traits in Wheat Genotypes. Robin AHK; Ghosh S; Shahed MA Plants (Basel); 2021 May; 10(6):. PubMed ID: 34064258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]