These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26019324)

  • 41. Developmental dyslexia susceptibility genes DNAAF4, DCDC2, and NRSN1 are associated with brain function in fluently reading adolescents and young adults.
    Rinne N; Wikman P; Sahari E; Salmi J; Einarsdóttir E; Kere J; Alho K
    Cereb Cortex; 2024 Apr; 34(4):. PubMed ID: 38610086
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Left minineglect in dyslexic adults.
    Hari R; Renvall H; Tanskanen T
    Brain; 2001 Jul; 124(Pt 7):1373-80. PubMed ID: 11408332
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The relationship between language-processing and visual-processing deficits in developmental dyslexia.
    Cestnick L; Coltheart M
    Cognition; 1999 Jul; 71(3):231-55. PubMed ID: 10476605
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Motion-onset VEPs in dyslexia. Evidence for visual perceptual deficit.
    Schulte-Körne G; Bartling J; Deimel W; Remschmidt H
    Neuroreport; 2004 Apr; 15(6):1075-8. PubMed ID: 15076738
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A pilot Indian family-based association study between dyslexia and Reelin pathway genes, DCDC2 and ROBO1, identifies modest association with a triallelic unit TAT in the gene RELN.
    Devasenapathy S; Midha R; Naskar T; Mehta A; Prajapati B; Ummekulsum M; Sagar R; Singh NC; Sinha S
    Asian J Psychiatr; 2018 Oct; 37():121-129. PubMed ID: 30199849
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of candidate genes for DYX1 and DYX2 in families with dyslexia.
    Brkanac Z; Chapman NH; Matsushita MM; Chun L; Nielsen K; Cochrane E; Berninger VW; Wijsman EM; Raskind WH
    Am J Med Genet B Neuropsychiatr Genet; 2007 Jun; 144B(4):556-60. PubMed ID: 17450541
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Visual processing and dyslexia.
    Everatt J; Bradshaw MF; Hibbard PB
    Perception; 1999; 28(2):243-54. PubMed ID: 10615463
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Postnatal analysis of the effect of embryonic knockdown and overexpression of candidate dyslexia susceptibility gene homolog Dcdc2 in the rat.
    Burbridge TJ; Wang Y; Volz AJ; Peschansky VJ; Lisann L; Galaburda AM; Lo Turco JJ; Rosen GD
    Neuroscience; 2008 Mar; 152(3):723-33. PubMed ID: 18313856
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Visual evoked potential evidence for magnocellular system deficit in dyslexia.
    Kubová Z; Kuba M; Peregrin J; Nováková V
    Physiol Res; 1996; 45(1):87-9. PubMed ID: 8884929
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impaired Driving Performance as Evidence of a Magnocellular Deficit in Dyslexia and Visual Stress.
    Fisher C; Chekaluk E; Irwin J
    Dyslexia; 2015 Nov; 21(4):350-60. PubMed ID: 26334203
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neurophysiological and behavioural correlates of coherent motion perception in dyslexia.
    Taroyan NA; Nicolson RI; Buckley D
    Dyslexia; 2011 Aug; 17(3):282-9. PubMed ID: 21793124
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Task-dependent modulation of neglect dyslexia? Novel evidence from the viewing position effect.
    Stenneken P; van Eimeren L; Keller I; Jacobs AM; Kerkhoff G
    Brain Res; 2008 Jan; 1189():166-78. PubMed ID: 18054900
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two visual motion processing deficits in developmental dyslexia associated with different reading skills deficits.
    Wilmer JB; Richardson AJ; Chen Y; Stein JF
    J Cogn Neurosci; 2004 May; 16(4):528-40. PubMed ID: 15165346
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia.
    Schumacher J; Anthoni H; Dahdouh F; König IR; Hillmer AM; Kluck N; Manthey M; Plume E; Warnke A; Remschmidt H; Hülsmann J; Cichon S; Lindgren CM; Propping P; Zucchelli M; Ziegler A; Peyrard-Janvid M; Schulte-Körne G; Nöthen MM; Kere J
    Am J Hum Genet; 2006 Jan; 78(1):52-62. PubMed ID: 16385449
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coherent motion, magnocellular sensitivity and the causation of dyslexia.
    Skottun BC; Skoyles JR
    Int J Neurosci; 2008 Jan; 118(1):185-90. PubMed ID: 18041615
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Visual magnocellular and structure from motion perceptual deficits in a neurodevelopmental model of dorsal stream function.
    Mendes M; Silva F; Simões L; Jorge M; Saraiva J; Castelo-Branco M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):788-98. PubMed ID: 16256320
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The familial incidence of symptoms of Scotopic Sensitivity/Irlen syndrome.
    Robinson GL; Foreman PJ; Dear KB
    Percept Mot Skills; 1996 Dec; 83(3 Pt 1):1043-55. PubMed ID: 8961341
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic visual perception and reading development in Chinese school children.
    Meng X; Cheng-Lai A; Zeng B; Stein JF; Zhou X
    Ann Dyslexia; 2011 Dec; 61(2):161-76. PubMed ID: 21240572
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Beyond the global motion deficit hypothesis of developmental dyslexia: A cross-sectional study of visual, cognitive, and socio-economic factors influencing reading ability in children.
    Piotrowska B; Willis A
    Vision Res; 2019 Jun; 159():48-60. PubMed ID: 30885877
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Association of a rare variant with mismatch negativity in a region between KIAA0319 and DCDC2 in dyslexia.
    Czamara D; Bruder J; Becker J; Bartling J; Hoffmann P; Ludwig KU; Müller-Myhsok B; Schulte-Körne G
    Behav Genet; 2011 Jan; 41(1):110-9. PubMed ID: 21104116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.