These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 26019730)
1. Combining Wireless Neural Recording and Video Capture for the Analysis of Natural Gait. Foster JD; Freifeld O; Nuyujukian P; Ryu SI; Black MJ; Shenoy KV Int IEEE EMBS Conf Neural Eng; 2011; 2011():613-616. PubMed ID: 26019730 [TBL] [Abstract][Full Text] [Related]
2. A freely-moving monkey treadmill model. Foster JD; Nuyujukian P; Freifeld O; Gao H; Walker R; I Ryu S; H Meng T; Murmann B; J Black M; Shenoy KV J Neural Eng; 2014 Aug; 11(4):046020. PubMed ID: 24995476 [TBL] [Abstract][Full Text] [Related]
3. A framework for relating neural activity to freely moving behavior. Foster JD; Nuyujukian P; Freifeld O; Ryu SI; Black MJ; Shenoy KV Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2736-9. PubMed ID: 23366491 [TBL] [Abstract][Full Text] [Related]
7. A markerless platform for ambulatory systems neuroscience. Silvernagel MP; Ling AS; Nuyujukian P; Sci Robot; 2021 Sep; 6(58):eabj7045. PubMed ID: 34516749 [TBL] [Abstract][Full Text] [Related]
8. A wireless transmission neural interface system for unconstrained non-human primates. Fernandez-Leon JA; Parajuli A; Franklin R; Sorenson M; Felleman DJ; Hansen BJ; Hu M; Dragoi V J Neural Eng; 2015 Oct; 12(5):056005. PubMed ID: 26269496 [TBL] [Abstract][Full Text] [Related]
9. HermesB: a continuous neural recording system for freely behaving primates. Santhanam G; Linderman MD; Gilja V; Afshar A; Ryu SI; Meng TH; Shenoy KV IEEE Trans Biomed Eng; 2007 Nov; 54(11):2037-50. PubMed ID: 18018699 [TBL] [Abstract][Full Text] [Related]
10. 3D Tracking of Human Motion Using Visual Skeletonization and Stereoscopic Vision. Zago M; Luzzago M; Marangoni T; De Cecco M; Tarabini M; Galli M Front Bioeng Biotechnol; 2020; 8():181. PubMed ID: 32195243 [TBL] [Abstract][Full Text] [Related]
11. Towards image-based animal tracking in natural environments using a freely moving camera. Haalck L; Mangan M; Webb B; Risse B J Neurosci Methods; 2020 Jan; 330():108455. PubMed ID: 31739118 [TBL] [Abstract][Full Text] [Related]
12. Neural correlates to automatic behavior estimations from RGB-D video in epilepsy unit. Gabriel P; Doyle WK; Devinsky O; Friedman D; Thesen T; Gilja V Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3402-3405. PubMed ID: 28269034 [TBL] [Abstract][Full Text] [Related]
17. Isolating gait-related movement artifacts in electroencephalography during human walking. Kline JE; Huang HJ; Snyder KL; Ferris DP J Neural Eng; 2015 Aug; 12(4):046022. PubMed ID: 26083595 [TBL] [Abstract][Full Text] [Related]
18. Markerless motion capture using appearance and inertial data. Wong C; Zhang Z; Lo B; Yang GZ Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6907-10. PubMed ID: 25571584 [TBL] [Abstract][Full Text] [Related]
19. Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane. Sandau M; Koblauch H; Moeslund TB; Aanæs H; Alkjær T; Simonsen EB Med Eng Phys; 2014 Sep; 36(9):1168-75. PubMed ID: 25085672 [TBL] [Abstract][Full Text] [Related]
20. Open-Source, Low Cost, Free-Behavior Monitoring, and Reward System for Neuroscience Research in Non-human Primates. Libey T; Fetz EE Front Neurosci; 2017; 11():265. PubMed ID: 28559792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]