These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26019730)

  • 1. Combining Wireless Neural Recording and Video Capture for the Analysis of Natural Gait.
    Foster JD; Freifeld O; Nuyujukian P; Ryu SI; Black MJ; Shenoy KV
    Int IEEE EMBS Conf Neural Eng; 2011; 2011():613-616. PubMed ID: 26019730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A freely-moving monkey treadmill model.
    Foster JD; Nuyujukian P; Freifeld O; Gao H; Walker R; I Ryu S; H Meng T; Murmann B; J Black M; Shenoy KV
    J Neural Eng; 2014 Aug; 11(4):046020. PubMed ID: 24995476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A framework for relating neural activity to freely moving behavior.
    Foster JD; Nuyujukian P; Freifeld O; Ryu SI; Black MJ; Shenoy KV
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2736-9. PubMed ID: 23366491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HermesC: low-power wireless neural recording system for freely moving primates.
    Chestek CA; Gilja V; Nuyujukian P; Kier RJ; Solzbacher F; Ryu SI; Harrison RR; Shenoy KV
    IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):330-8. PubMed ID: 19497829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation and validation of temporal gait features using a markerless 2D video system.
    Verlekar TT; De Vroey H; Claeys K; Hallez H; Soares LD; Correia PL
    Comput Methods Programs Biomed; 2019 Jul; 175():45-51. PubMed ID: 31104714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio.
    Bala PC; Eisenreich BR; Yoo SBM; Hayden BY; Park HS; Zimmermann J
    Nat Commun; 2020 Sep; 11(1):4560. PubMed ID: 32917899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A markerless platform for ambulatory systems neuroscience.
    Silvernagel MP; Ling AS; Nuyujukian P;
    Sci Robot; 2021 Sep; 6(58):eabj7045. PubMed ID: 34516749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A wireless transmission neural interface system for unconstrained non-human primates.
    Fernandez-Leon JA; Parajuli A; Franklin R; Sorenson M; Felleman DJ; Hansen BJ; Hu M; Dragoi V
    J Neural Eng; 2015 Oct; 12(5):056005. PubMed ID: 26269496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HermesB: a continuous neural recording system for freely behaving primates.
    Santhanam G; Linderman MD; Gilja V; Afshar A; Ryu SI; Meng TH; Shenoy KV
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):2037-50. PubMed ID: 18018699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Tracking of Human Motion Using Visual Skeletonization and Stereoscopic Vision.
    Zago M; Luzzago M; Marangoni T; De Cecco M; Tarabini M; Galli M
    Front Bioeng Biotechnol; 2020; 8():181. PubMed ID: 32195243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards image-based animal tracking in natural environments using a freely moving camera.
    Haalck L; Mangan M; Webb B; Risse B
    J Neurosci Methods; 2020 Jan; 330():108455. PubMed ID: 31739118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural correlates to automatic behavior estimations from RGB-D video in epilepsy unit.
    Gabriel P; Doyle WK; Devinsky O; Friedman D; Thesen T; Gilja V
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3402-3405. PubMed ID: 28269034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pixying Behavior: A Versatile Real-Time and
    Nashaat MA; Oraby H; Peña LB; Dominiak S; Larkum ME; Sachdev RN
    eNeuro; 2017; 4(1):. PubMed ID: 28275712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
    Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA
    J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated Quantification of the Landing Error Scoring System With a Markerless Motion-Capture System.
    Mauntel TC; Padua DA; Stanley LE; Frank BS; DiStefano LJ; Peck KY; Cameron KL; Marshall SW
    J Athl Train; 2017 Nov; 52(11):1002-1009. PubMed ID: 29048200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial cognition in a virtual reality home-cage extension for freely moving rodents.
    Kaupert U; Thurley K; Frei K; Bagorda F; Schatz A; Tocker G; Rapoport S; Derdikman D; Winter Y
    J Neurophysiol; 2017 Apr; 117(4):1736-1748. PubMed ID: 28077665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolating gait-related movement artifacts in electroencephalography during human walking.
    Kline JE; Huang HJ; Snyder KL; Ferris DP
    J Neural Eng; 2015 Aug; 12(4):046022. PubMed ID: 26083595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Markerless motion capture using appearance and inertial data.
    Wong C; Zhang Z; Lo B; Yang GZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6907-10. PubMed ID: 25571584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane.
    Sandau M; Koblauch H; Moeslund TB; Aanæs H; Alkjær T; Simonsen EB
    Med Eng Phys; 2014 Sep; 36(9):1168-75. PubMed ID: 25085672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Open-Source, Low Cost, Free-Behavior Monitoring, and Reward System for Neuroscience Research in Non-human Primates.
    Libey T; Fetz EE
    Front Neurosci; 2017; 11():265. PubMed ID: 28559792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.