BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26020061)

  • 21. Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components.
    Sutcliffe IC; Harrington DJ
    FEMS Microbiol Rev; 2004 Nov; 28(5):645-59. PubMed ID: 15539077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SInCRe-structural interactome computational resource for Mycobacterium tuberculosis.
    Metri R; Hariharaputran S; Ramakrishnan G; Anand P; Raghavender US; Ochoa-Montaño B; Higueruelo AP; Sowdhamini R; Chandra NR; Blundell TL; Srinivasan N
    Database (Oxford); 2015; 2015():bav060. PubMed ID: 26130660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Database interrogation algorithms for identification of proteins in proteomic separations.
    Palagi PM; Lisacek F; Appel RD
    Methods Mol Biol; 2009; 519():515-31. PubMed ID: 19381607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of selective antibacterial peptides by the Polarity Profile method.
    Polanco C; Buhse T; Samaniego JL; Castañón-González JA
    Acta Biochim Pol; 2013; 60(2):183-9. PubMed ID: 23741718
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Domain analysis of fatty acid synthase protein (NP_217040) from Mycobacterium tuberculosis H37Rv--a bioinformatics study.
    Ramesh KV; Wagle K; Deshmukh S
    J Biomol Struct Dyn; 2007 Feb; 24(4):393-412. PubMed ID: 17206854
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Future prospects of molecular epidemiology in tuberculosis].
    Matsumoto T; Iwamoto T
    Kekkaku; 2009 Dec; 84(12):783-4. PubMed ID: 20077862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Secretome profile analysis of hypervirulent Mycobacterium tuberculosis CPT31 reveals increased production of EsxB and proteins involved in adaptation to intracellular lifestyle.
    Vargas-Romero F; Guitierrez-Najera N; Mendoza-Hernández G; Ortega-Bernal D; Hernández-Pando R; Castañón-Arreola M
    Pathog Dis; 2016 Mar; 74(2):. PubMed ID: 26733498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predict mycobacterial proteins subcellular locations by incorporating pseudo-average chemical shift into the general form of Chou's pseudo amino acid composition.
    Fan GL; Li QZ
    J Theor Biol; 2012 Jul; 304():88-95. PubMed ID: 22459701
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of Mycobacterium tuberculosis H37Rv integral membrane proteins by one-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry.
    Xiong Y; Chalmers MJ; Gao FP; Cross TA; Marshall AG
    J Proteome Res; 2005; 4(3):855-61. PubMed ID: 15952732
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting the subcellular localization of mycobacterial proteins by incorporating the optimal tripeptides into the general form of pseudo amino acid composition.
    Zhu PP; Li WC; Zhong ZJ; Deng EZ; Ding H; Chen W; Lin H
    Mol Biosyst; 2015 Feb; 11(2):558-63. PubMed ID: 25437899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Roles of PE_PGRS family in Mycobacterium tuberculosis pathogenesis and novel measures against tuberculosis.
    Tian C; Jian-Ping X
    Microb Pathog; 2010 Dec; 49(6):311-4. PubMed ID: 20638467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Comparison of the proteomes of isoniazid-resistant Mycobacterium tuberculosis strains and isoniazid-susceptible strains].
    Jiang X; Gao F; Zhang WH; Hu ZY; Wang HH
    Zhonghua Jie He He Hu Xi Za Zhi; 2007 Jun; 30(6):427-31. PubMed ID: 17673015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mycobacterial proteomics: analysis of expressed proteomes and post-translational modifications to identify candidate virulence factors.
    Calder B; Soares NC; de Kock E; Blackburn JM
    Expert Rev Proteomics; 2015 Feb; 12(1):21-35. PubMed ID: 25603863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential non homologous protein targets of mycobacterium tuberculosis H37Rv identified from protein-protein interaction network.
    Melak T; Gakkhar S
    J Theor Biol; 2014 Nov; 361():152-8. PubMed ID: 25106794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased virulence of Mycobacterium tuberculosis H37Rv overexpressing LipY in a murine model.
    Singh VK; Srivastava M; Dasgupta A; Singh MP; Srivastava R; Srivastava BS
    Tuberculosis (Edinb); 2014 May; 94(3):252-61. PubMed ID: 24631199
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ESAT-6 proteins: protective antigens and virulence factors?
    Brodin P; Rosenkrands I; Andersen P; Cole ST; Brosch R
    Trends Microbiol; 2004 Nov; 12(11):500-8. PubMed ID: 15488391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polar profile of antiviral peptides from AVPpred Database.
    Polanco C; Samaniego JL; Castañón-González JA; Buhse T
    Cell Biochem Biophys; 2014 Nov; 70(2):1469-77. PubMed ID: 24993579
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immunoproteomic identification of secretory and subcellular protein antigens and functional evaluation of the secretome fraction of Mycobacterium immunogenum, a newly recognized species of the Mycobacterium chelonae-Mycobacterium abscessus group.
    Gupta MK; Subramanian V; Yadav JS
    J Proteome Res; 2009 May; 8(5):2319-30. PubMed ID: 19209886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mass spectrometry-based proteomics combined with bioinformatic tools for bacterial classification.
    Dworzanski JP; Deshpande SV; Chen R; Jabbour RE; Snyder AP; Wick CH; Li L
    J Proteome Res; 2006 Jan; 5(1):76-87. PubMed ID: 16396497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.