BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

3145 related articles for article (PubMed ID: 26020118)

  • 21. Merging Visible Light Photoredox and Gold Catalysis.
    Hopkinson MN; Tlahuext-Aca A; Glorius F
    Acc Chem Res; 2016 Oct; 49(10):2261-2272. PubMed ID: 27610939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supported gold catalysis: from small molecule activation to green chemical synthesis.
    Liu X; He L; Liu YM; Cao Y
    Acc Chem Res; 2014 Mar; 47(3):793-804. PubMed ID: 24328524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition and oxygen activation in copper amine oxidases.
    Shepard EM; Dooley DM
    Acc Chem Res; 2015 May; 48(5):1218-26. PubMed ID: 25897668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in Rhodium-Catalyzed Oxidative Arene Alkenylation.
    Zhu W; Gunnoe TB
    Acc Chem Res; 2020 Apr; 53(4):920-936. PubMed ID: 32239913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient Heterogeneous Palladium Catalysts in Oxidative Cascade Reactions.
    Li MB; Bäckvall JE
    Acc Chem Res; 2021 May; 54(9):2275-2286. PubMed ID: 33871980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C-H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants.
    Fabry DC; Rueping M
    Acc Chem Res; 2016 Sep; 49(9):1969-79. PubMed ID: 27556812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C-H/Het-H bond functionalizations.
    Ackermann L
    Acc Chem Res; 2014 Feb; 47(2):281-95. PubMed ID: 23379589
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation.
    Qi X; Li Y; Bai R; Lan Y
    Acc Chem Res; 2017 Nov; 50(11):2799-2808. PubMed ID: 29112396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective aerobic oxidation of hydroxy compounds catalyzed by photoactivated ruthenium-salen complexes (selective catalytic aerobic oxidation).
    Irie R; Katsuki T
    Chem Rec; 2004; 4(2):96-109. PubMed ID: 15073877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Site-Selective C-H Functionalization via Synergistic Use of Electrochemistry and Transition Metal Catalysis.
    Jiao KJ; Xing YK; Yang QL; Qiu H; Mei TS
    Acc Chem Res; 2020 Feb; 53(2):300-310. PubMed ID: 31939278
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The azomethine ylide route to amine C-H functionalization: redox-versions of classic reactions and a pathway to new transformations.
    Seidel D
    Acc Chem Res; 2015 Feb; 48(2):317-28. PubMed ID: 25560649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Substrate activation strategies in rhodium(III)-catalyzed selective functionalization of arenes.
    Song G; Li X
    Acc Chem Res; 2015 Apr; 48(4):1007-20. PubMed ID: 25844661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient and selective Cu/nitroxyl-catalyzed methods for aerobic oxidative lactonization of diols.
    Xie X; Stahl SS
    J Am Chem Soc; 2015 Mar; 137(11):3767-70. PubMed ID: 25751494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dioxygen Reduction and Bioinspired Oxidations by Non-heme Iron(II)-α-Hydroxy Acid Complexes.
    Chatterjee S; Paine TK
    Acc Chem Res; 2023 Nov; 56(22):3175-3187. PubMed ID: 37938969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.
    Chirik PJ
    Acc Chem Res; 2015 Jun; 48(6):1687-95. PubMed ID: 26042837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-redox metal ions can promote Wacker-type oxidations even better than copper(II): a new opportunity in catalyst design.
    Qin S; Dong L; Chen Z; Zhang S; Yin G
    Dalton Trans; 2015 Oct; 44(40):17508-15. PubMed ID: 26390300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cobalt catalysis involving π components in organic synthesis.
    Gandeepan P; Cheng CH
    Acc Chem Res; 2015 Apr; 48(4):1194-206. PubMed ID: 25854540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Asymmetric organocatalysis combined with metal catalysis: concept, proof of concept, and beyond.
    Chen DF; Han ZY; Zhou XL; Gong LZ
    Acc Chem Res; 2014 Aug; 47(8):2365-77. PubMed ID: 24911184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances of transition-metal catalyzed radical oxidative cross-couplings.
    Liu C; Liu D; Lei A
    Acc Chem Res; 2014 Dec; 47(12):3459-70. PubMed ID: 25364854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 158.