BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

585 related articles for article (PubMed ID: 26020166)

  • 1. RUMINANT NUTRITION SYMPOSIUM: Use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis.
    McAllister TA; Meale SJ; Valle E; Guan LL; Zhou M; Kelly WJ; Henderson G; Attwood GT; Janssen PH
    J Anim Sci; 2015 Apr; 93(4):1431-49. PubMed ID: 26020166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation.
    Beauchemin KA; Ungerfeld EM; Eckard RJ; Wang M
    Animal; 2020 Mar; 14(S1):s2-s16. PubMed ID: 32024560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies.
    Leahy SC; Kelly WJ; Ronimus RS; Wedlock N; Altermann E; Attwood GT
    Animal; 2013 Jun; 7 Suppl 2():235-43. PubMed ID: 23739466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism.
    Wallace RJ; Snelling TJ; McCartney CA; Tapio I; Strozzi F
    Genet Sel Evol; 2017 Jan; 49(1):9. PubMed ID: 28093073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals.
    Tseten T; Sanjorjo RA; Kwon M; Kim SW
    J Microbiol Biotechnol; 2022 Mar; 32(3):269-277. PubMed ID: 35283433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen.
    Patra AK; Saxena J
    Phytochemistry; 2010 Aug; 71(11-12):1198-222. PubMed ID: 20570294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of 3-nitrooxypropanol and canola oil to mitigate enteric methane emissions of beef cattle results in distinctly different effects on the rumen microbial community.
    Gruninger RJ; Zhang XM; Smith ML; Kung L; Vyas D; McGinn SM; Kindermann M; Wang M; Tan ZL; Beauchemin KA
    Anim Microbiome; 2022 May; 4(1):35. PubMed ID: 35642048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions.
    Belanche A; de la Fuente G; Newbold CJ
    FEMS Microbiol Ecol; 2015 Mar; 91(3):. PubMed ID: 25764558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation.
    Lan W; Yang C
    Sci Total Environ; 2019 Mar; 654():1270-1283. PubMed ID: 30841400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene and transcript abundances of bacterial type III secretion systems from the rumen microbiome are correlated with methane yield in sheep.
    Kamke J; Soni P; Li Y; Ganesh S; Kelly WJ; Leahy SC; Shi W; Froula J; Rubin EM; Attwood GT
    BMC Res Notes; 2017 Aug; 10(1):367. PubMed ID: 28789673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower methane emissions were associated with higher abundance of ruminal Prevotella in a cohort of Colombian buffalos.
    Aguilar-Marin SB; Betancur-Murillo CL; Isaza GA; Mesa H; Jovel J
    BMC Microbiol; 2020 Nov; 20(1):364. PubMed ID: 33246412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Methanogens and manipulation of methane production in the rumen].
    Guo YQ; Hu WL; Liu JX
    Wei Sheng Wu Xue Bao; 2005 Feb; 45(1):145-8. PubMed ID: 15847184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats.
    Wang M; Wang R; Zhang X; Ungerfeld EM; Long D; Mao H; Jiao J; Beauchemin KA; Tan Z
    Br J Nutr; 2017 Sep; 118(6):401-410. PubMed ID: 28927478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review: Ruminal microbiome and microbial metabolome: effects of diet and ruminant host.
    Newbold CJ; Ramos-Morales E
    Animal; 2020 Mar; 14(S1):s78-s86. PubMed ID: 32024572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions.
    Leahy SC; Kelly WJ; Altermann E; Ronimus RS; Yeoman CJ; Pacheco DM; Li D; Kong Z; McTavish S; Sang C; Lambie SC; Janssen PH; Dey D; Attwood GT
    PLoS One; 2010 Jan; 5(1):e8926. PubMed ID: 20126622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RUMINANT NUTRITION SYMPOSIUM: How to use data on the rumen microbiome to improve our understanding of ruminant nutrition.
    Firkins JL; Yu Z
    J Anim Sci; 2015 Apr; 93(4):1450-70. PubMed ID: 26020167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symposium review: Understanding the role of the rumen microbiome in enteric methane mitigation and productivity in dairy cows.
    Pitta D; Indugu N; Narayan K; Hennessy M
    J Dairy Sci; 2022 Oct; 105(10):8569-8585. PubMed ID: 35346473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rumen methanogen and protozoal communities of Tibetan sheep and Gansu Alpine Finewool sheep grazing on the Qinghai-Tibetan Plateau, China.
    Huang J; Li Y
    BMC Microbiol; 2018 Dec; 18(1):212. PubMed ID: 30545295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring Methane Production from Ruminants.
    Hill J; McSweeney C; Wright AG; Bishop-Hurley G; Kalantar-Zadeh K
    Trends Biotechnol; 2016 Jan; 34(1):26-35. PubMed ID: 26603286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverse hydrogen production and consumption pathways influence methane production in ruminants.
    Greening C; Geier R; Wang C; Woods LC; Morales SE; McDonald MJ; Rushton-Green R; Morgan XC; Koike S; Leahy SC; Kelly WJ; Cann I; Attwood GT; Cook GM; Mackie RI
    ISME J; 2019 Oct; 13(10):2617-2632. PubMed ID: 31243332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.