These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26020522)

  • 1. Mitochondrial reshaping accompanies neural differentiation in the developing spinal cord.
    Mils V; Bosch S; Roy J; Bel-Vialar S; Belenguer P; Pituello F; Miquel MC
    PLoS One; 2015; 10(5):e0128130. PubMed ID: 26020522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation of Human Neural Stem Cells into Motor Neurons Stimulates Mitochondrial Biogenesis and Decreases Glycolytic Flux.
    O'Brien LC; Keeney PM; Bennett JP
    Stem Cells Dev; 2015 Sep; 24(17):1984-94. PubMed ID: 25892363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The CDC25B phosphatase shortens the G2 phase of neural progenitors and promotes efficient neuron production.
    Peco E; Escude T; Agius E; Sabado V; Medevielle F; Ducommun B; Pituello F
    Development; 2012 Mar; 139(6):1095-104. PubMed ID: 22318230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial dynamics in the regulation of neurogenesis: From development to the adult brain.
    Khacho M; Slack RS
    Dev Dyn; 2018 Jan; 247(1):47-53. PubMed ID: 28643345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurogenesis and neurite outgrowth in the spinal cord of chicken embryos and in primary cultures of spinal neurons following knockdown of Class III beta tubulin with antisense morpholinos.
    Tucker RP; Tran H; Gong Q
    Protoplasma; 2008 Dec; 234(1-4):97-101. PubMed ID: 18825486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties and mechanisms of spontaneous activity in the embryonic chick hindbrain.
    Hughes SM; Easton CR; Bosma MM
    Dev Neurobiol; 2009 Jul; 69(8):477-90. PubMed ID: 19263418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pax3 and Pax7 interact reciprocally and regulate the expression of cadherin-7 through inducing neuron differentiation in the developing chicken spinal cord.
    Lin J; Wang C; Yang C; Fu S; Redies C
    J Comp Neurol; 2016 Apr; 524(5):940-62. PubMed ID: 26287727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The on/off of Pax6 controls the tempo of neuronal differentiation in the developing spinal cord.
    Bel-Vialar S; Medevielle F; Pituello F
    Dev Biol; 2007 May; 305(2):659-73. PubMed ID: 17399698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subtypes of hypoxia-responsive cells differentiate into neurons in spinal cord of zebrafish embryos after hypoxic stress.
    Zeng CW; Kamei Y; Wang CT; Tsai HJ
    Biol Cell; 2016 Dec; 108(12):357-377. PubMed ID: 27539672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuregulin 1 Type II-ErbB Signaling Promotes Cell Divisions Generating Neurons from Neural Progenitor Cells in the Developing Zebrafish Brain.
    Sato T; Sato F; Kamezaki A; Sakaguchi K; Tanigome R; Kawakami K; Sehara-Fujisawa A
    PLoS One; 2015; 10(5):e0127360. PubMed ID: 26001123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutralization of nerve growth factor impairs proliferation and differentiation of adult neural progenitors in the subventricular zone.
    Scardigli R; Capelli P; Vignone D; Brandi R; Ceci M; La Regina F; Piras E; Cintoli S; Berardi N; Capsoni S; Cattaneo A
    Stem Cells; 2014 Sep; 32(9):2516-28. PubMed ID: 24806549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis.
    Khacho M; Clark A; Svoboda DS; MacLaurin JG; Lagace DC; Park DS; Slack RS
    Hum Mol Genet; 2017 Sep; 26(17):3327-3341. PubMed ID: 28595361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wnt-3a and Wnt-3 differently stimulate proliferation and neurogenesis of spinal neural precursors and promote neurite outgrowth by canonical signaling.
    David MD; Cantí C; Herreros J
    J Neurosci Res; 2010 Nov; 88(14):3011-23. PubMed ID: 20722074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immature spinal cord neurons are dynamic regulators of adult nociceptive sensitivity.
    Rusanescu G; Mao J
    J Cell Mol Med; 2015 Oct; 19(10):2352-64. PubMed ID: 26223362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord.
    Hamilton LK; Truong MK; Bednarczyk MR; Aumont A; Fernandes KJ
    Neuroscience; 2009 Dec; 164(3):1044-56. PubMed ID: 19747531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theoretical model of neural maturation in the developing chick spinal cord.
    Joshi P; Skromne I
    PLoS One; 2020; 15(12):e0244219. PubMed ID: 33338079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression profiling of neural stem cells and identification of regulators of neural differentiation during cortical development.
    Ohtsuka T; Shimojo H; Matsunaga M; Watanabe N; Kometani K; Minato N; Kageyama R
    Stem Cells; 2011 Nov; 29(11):1817-28. PubMed ID: 21898698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondria in Developmental and Adult Neurogenesis.
    Arrázola MS; Andraini T; Szelechowski M; Mouledous L; Arnauné-Pelloquin L; Davezac N; Belenguer P; Rampon C; Miquel MC
    Neurotox Res; 2019 Aug; 36(2):257-267. PubMed ID: 30215161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Playing with the cell cycle to build the spinal cord.
    Molina A; Pituello F
    Dev Biol; 2017 Dec; 432(1):14-23. PubMed ID: 28034699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial dynamics in postmitotic cells regulate neurogenesis.
    Iwata R; Casimir P; Vanderhaeghen P
    Science; 2020 Aug; 369(6505):858-862. PubMed ID: 32792401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.