These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26020525)

  • 21. Motor imagery classification of upper limb movements based on spectral domain features of EEG patterns.
    Samuel OW; Xiangxin Li ; Yanjuan Geng ; Pang Feng ; Shixiong Chen ; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2976-2979. PubMed ID: 29060523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Model-based variables for the kinematic assessment of upper-extremity impairments in post-stroke patients.
    Panarese A; Pirondini E; Tropea P; Cesqui B; Posteraro F; Micera S
    J Neuroeng Rehabil; 2016 Sep; 13(1):81. PubMed ID: 27609062
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural decoding of continuous upper limb movements: a meta-analysis.
    Khaliq Fard M; Fallah A; Maleki A
    Disabil Rehabil Assist Technol; 2022 Oct; 17(7):731-737. PubMed ID: 33186068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchical Decoding Model of Upper Limb Movement Intention From EEG Signals Based on Attention State Estimation.
    Bi L; Xia S; Fei W
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2008-2016. PubMed ID: 34559657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upper limb movements can be decoded from the time-domain of low-frequency EEG.
    Ofner P; Schwarz A; Pereira J; Müller-Putz GR
    PLoS One; 2017; 12(8):e0182578. PubMed ID: 28797109
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decoding intra-limb and inter-limb kinematics during treadmill walking from scalp electroencephalographic (EEG) signals.
    Presacco A; Forrester LW; Contreras-Vidal JL
    IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):212-9. PubMed ID: 22438336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees.
    Agashe HA; Paek AY; Contreras-Vidal JL
    Prog Brain Res; 2016; 228():107-28. PubMed ID: 27590967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decoding repetitive finger movements with brain activity acquired via non-invasive electroencephalography.
    Paek AY; Agashe HA; Contreras-Vidal JL
    Front Neuroeng; 2014; 7():3. PubMed ID: 24659964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Cognitive Distraction on Upper Limb Movement Decoding From EEG Signals.
    Fei W; Bi L; Wang J; Xia S; Fan X; Guan C
    IEEE Trans Biomed Eng; 2023 Jan; 70(1):166-174. PubMed ID: 35767496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the usage of linear regression models to reconstruct limb kinematics from low frequency EEG signals.
    Antelis JM; Montesano L; Ramos-Murguialday A; Birbaumer N; Minguez J
    PLoS One; 2013; 8(4):e61976. PubMed ID: 23613992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The contribution of kinematics in the assessment of upper limb motor recovery early after stroke.
    van Dokkum L; Hauret I; Mottet D; Froger J; Métrot J; Laffont I
    Neurorehabil Neural Repair; 2014 Jan; 28(1):4-12. PubMed ID: 23911973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconstructing Synergy-Based Hand Grasp Kinematics from Electroencephalographic Signals.
    Pei D; Olikkal P; Adali T; Vinjamuri R
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of joystick stiffness, movement speed and movement direction on joystick and upper limb kinematics when using hydraulic-actuation joystick controls in heavy vehicles.
    Oliver M; Tingley M; Rogers R; Rickards J; Biden E
    Ergonomics; 2007 Jun; 50(6):837-58. PubMed ID: 17457745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of optical motion capture for the analysis of normative upper body kinematics during functional upper limb tasks: A systematic review.
    Valevicius AM; Jun PY; Hebert JS; Vette AH
    J Electromyogr Kinesiol; 2018 Jun; 40():1-15. PubMed ID: 29533202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Continuous Bimanual Trajectory Decoding of Coordinated Movement From EEG Signals.
    Chen YF; Fu R; Wu J; Song J; Ma R; Jiang YC; Zhang M
    IEEE J Biomed Health Inform; 2022 Dec; 26(12):6012-6023. PubMed ID: 36423320
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Offline decoding of upper limb muscle synergies from EEG slow cortical potentials.
    Beuchat NJ; Chavarriaga R; Degallier S; Millán Jdel R
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3594-7. PubMed ID: 24110507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous Decoding of Hand Movement From EEG Signals Using Phase-Based Connectivity Features.
    Hosseini SM; Shalchyan V
    Front Hum Neurosci; 2022; 16():901285. PubMed ID: 35845243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decoding Hand Movement Types and Kinematic Information From Electroencephalogram.
    Xu B; Wang Y; Deng L; Wu C; Zhang W; Li H; Song A
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1744-1755. PubMed ID: 34428142
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decoding Imagined 3D Hand Movement Trajectories From EEG: Evidence to Support the Use of Mu, Beta, and Low Gamma Oscillations.
    Korik A; Sosnik R; Siddique N; Coyle D
    Front Neurosci; 2018; 12():130. PubMed ID: 29615848
    [No Abstract]   [Full Text] [Related]  

  • 40. A piecewise probabilistic regression model to decode hand movement trajectories from epidural and subdural ECoG signals.
    Farrokhi B; Erfanian A
    J Neural Eng; 2018 Jun; 15(3):036020. PubMed ID: 29485407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.