These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 26020555)

  • 1. Implications of sodium hydrogen exchangers in various brain diseases.
    Verma V; Bali A; Singh N; Jaggi AS
    J Basic Clin Physiol Pharmacol; 2015 Sep; 26(5):417-26. PubMed ID: 26020555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blocking Na(+)-H+ exchange by cariporide reduces Na(+)-overload in ischemia and is cardioprotective.
    Hartmann M; Decking UK
    J Mol Cell Cardiol; 1999 Nov; 31(11):1985-95. PubMed ID: 10591025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium-hydrogen exchangers (NHE) in human cardiovascular diseases: interfering strategies and their therapeutic applications.
    Madonna R; De Caterina R
    Vascul Pharmacol; 2013; 59(5-6):127-30. PubMed ID: 24140414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen sulfide regulates Na+/H+ exchanger activity via stimulation of phosphoinositide 3-kinase/Akt and protein kinase G pathways.
    Hu LF; Li Y; Neo KL; Yong QC; Lee SW; Tan BK; Bian JS
    J Pharmacol Exp Ther; 2011 Nov; 339(2):726-35. PubMed ID: 21865440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of Na(+)/h (+) exchanger isoform 1 in inflammatory responses: maintaining H(+) homeostasis of immune cells.
    Shi Y; Kim D; Caldwell M; Sun D
    Adv Exp Med Biol; 2013; 961():411-8. PubMed ID: 23224899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na(+)/H(+)exchangers: linking osmotic dysequilibrium to modified cell function.
    Ritter M; Fuerst J; Wöll E; Chwatal S; Gschwentner M; Lang F; Deetjen P; Paulmichl M
    Cell Physiol Biochem; 2001; 11(1):1-18. PubMed ID: 11275678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The sodium-hydrogen exchange system in the heart: its role in ischemic and reperfusion injury and therapeutic implications.
    Karmazyn M
    Can J Cardiol; 1996 Oct; 12(10):1074-82. PubMed ID: 9191501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na+/H+ exchange inhibitor cariporide attenuates skeletal muscle infarction when administered before ischemia or reperfusion.
    McAllister SE; Moses MA; Jindal K; Ashrafpour H; Cahoon NJ; Huang N; Neligan PC; Forrest CR; Lipa JE; Pang CY
    J Appl Physiol (1985); 2009 Jan; 106(1):20-8. PubMed ID: 19023020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H+ and HCO3- transporters in the medullary thick ascending limb of the kidney: molecular mechanisms, function and regulation.
    Paillard M
    Kidney Int Suppl; 1998 Apr; 65():S36-41. PubMed ID: 9551430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of chronic cariporide treatment abrogates myocardial ion homeostasis during acute ischemia reperfusion.
    Bourahla V; Dubouchaud H; Mourmoura E; Vitiello D; Faure P; Migné C; Pujos-Guillot E; Richardson M; Demaison L
    J Cardiovasc Pharmacol; 2011 Sep; 58(3):284-94. PubMed ID: 21697734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limited effects of post-ischemic NHE blockade on [Na+]i and pHi in rat hearts explain its lack of cardioprotection.
    Ten Hove M; Van Echteld CJ
    Cardiovasc Res; 2004 Feb; 61(3):522-9. PubMed ID: 14962482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Na+/H+ exchanger isoform 1.
    Fliegel L
    Int J Biochem Cell Biol; 2005 Jan; 37(1):33-7. PubMed ID: 15381146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging roles of Na⁺/H⁺ exchangers in epilepsy and developmental brain disorders.
    Zhao H; Carney KE; Falgoust L; Pan JW; Sun D; Zhang Z
    Prog Neurobiol; 2016; 138-140():19-35. PubMed ID: 26965387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NHE-1 and NBC during pseudo-ischemia/reperfusion in rabbit ventricular myocytes.
    van Borren MM; Baartscheer A; Wilders R; Ravesloot JH
    J Mol Cell Cardiol; 2004 Aug; 37(2):567-77. PubMed ID: 15276026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lobster hepatopancreatic epithelial single cell suspensions as models for electrogenic sodium-proton exchange.
    Mandal PK
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Mar; 137(3):479-93. PubMed ID: 15123186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of protons to post-ischemic Na(+) and Ca(2+) overload and left ventricular mechanical dysfunction.
    Clanachan AS
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S141-S148. PubMed ID: 16686669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na⁺/H⁺ exchangers and intracellular pH in perinatal brain injury.
    Uria-Avellanal C; Robertson NJ
    Transl Stroke Res; 2014 Feb; 5(1):79-98. PubMed ID: 24452957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apical NA+/H+ exchangers in the mammalian gastrointestinal tract.
    Kiela PR; Xu H; Ghishan FK
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 7():51-79. PubMed ID: 17228096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of NA(+)/H(+) exchangers alters aquaporin-mediated water transport in human placenta.
    Dietrich V; Damiano AE
    Placenta; 2015 Dec; 36(12):1487-9. PubMed ID: 26470817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological role and regulation of the Na+/H+ exchanger.
    Malo ME; Fliegel L
    Can J Physiol Pharmacol; 2006 Nov; 84(11):1081-95. PubMed ID: 17218973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.