BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26020653)

  • 1. Nanotube field electron emission: principles, development, and applications.
    Li Y; Sun Y; Yeow JT
    Nanotechnology; 2015 Jun; 26(24):242001. PubMed ID: 26020653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotube electron sources and applications.
    de Jonge N; Bonard JM
    Philos Trans A Math Phys Eng Sci; 2004 Oct; 362(1823):2239-66. PubMed ID: 15370480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel field emission microscopy method to study field emission characteristics of freestanding carbon nanotube arrays.
    Li Y; Sun Y; Jaffray DA; Yeow JT
    Nanotechnology; 2017 Apr; 28(15):155704. PubMed ID: 28211793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient field emission from triode-type 1D arrays of carbon nanotubes.
    Shiratori Y; Furuichi K; Tsuji Y; Sugime H; Noda S
    Nanotechnology; 2009 Nov; 20(47):475707. PubMed ID: 19875868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotubes as field emitter.
    Zou R; Hu J; Song Y; Wang N; Chen H; Chen H; Wu J; Sun Y; Chen Z
    J Nanosci Nanotechnol; 2010 Dec; 10(12):7876-96. PubMed ID: 21121276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field emission properties of SiO
    Lim YD; Hu L; Xia X; Ali Z; Wang S; Tay BK; Aditya S; Miao J
    Nanotechnology; 2018 Jan; 29(1):015202. PubMed ID: 29083996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of Emission Lifetime of CNT Emitters by Coating ZnO on the CNT Surface.
    Yoon SH; Chung DJ; Lee J; Park KC; Kang CJ; Yoon TS; Shim EL; Choi YJ
    J Nanosci Nanotechnol; 2015 Nov; 15(11):9030-3. PubMed ID: 26726637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology dependent field emission of acid-spun carbon nanotube fibers.
    Fairchild SB; Boeckl J; Back TC; Ferguson JB; Koerner H; Murray PT; Maruyama B; Lange MA; Cahay MM; Behabtu N; Young CC; Pasquali M; Lockwood NP; Averett KL; Gruen G; Tsentalovich DE
    Nanotechnology; 2015 Mar; 26(10):105706. PubMed ID: 25694166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Nanotube Field Emitters Synthesized on Metal Alloy Substrate by PECVD for Customized Compact Field Emission Devices to Be Used in X-Ray Source Applications.
    Park S; Gupta AP; Yeo SJ; Jung J; Paik SH; Mativenga M; Kim SH; Shin JH; Ahn JS; Ryu J
    Nanomaterials (Basel); 2018 May; 8(6):. PubMed ID: 29843456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forms and behaviour of vacuum emission electronic devices comprising diamond or other carbon cold cathode emitters.
    Davidson JL; Kang WP; Subramanian K; Wong YM
    Philos Trans A Math Phys Eng Sci; 2008 Jan; 366(1863):281-93. PubMed ID: 18024363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters.
    Nguyen DD; Tai NH; Chen SY; Chueh YL
    Nanoscale; 2012 Jan; 4(2):632-8. PubMed ID: 22147118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High current density and longtime stable field electron transfer from large-area densely arrayed graphene nanosheet-carbon nanotube hybrids.
    Deng JH; Cheng L; Wang FJ; Li GZ; Li DJ; Cheng GA
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21558-66. PubMed ID: 25335851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Interfacial Electron Transport on Field Electron Emission from Carbon Nanotube Paste Emitters.
    Go E; Kim JW; Jeong JW; Park S; Kang JT; Choi S; Yeon JH; Song YH
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49854-49864. PubMed ID: 37816129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of the stability of electron field emission behavior and the related microplasma devices of carbon nanotubes by coating diamond films.
    Chang TH; Kunuku S; Hong YJ; Leou KC; Yew TR; Tai NH; Lin IN
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11589-97. PubMed ID: 24955653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory of Carbon Nanotube (CNT)-Based Electron Field Emitters.
    Bocharov GS; Eletskii AV
    Nanomaterials (Basel); 2013 Jul; 3(3):393-442. PubMed ID: 28348342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field Emission Cathodes to Form an Electron Beam Prepared from Carbon Nanotube Suspensions.
    Laszczyk KU
    Micromachines (Basel); 2020 Feb; 11(3):. PubMed ID: 32121329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-walled carbon nanotube thermionic electron emitters with dense, efficient and reproducible electron emission.
    Wang Y; Wu G; Xiang L; Xiao M; Li Z; Gao S; Chen Q; Wei X
    Nanoscale; 2017 Nov; 9(45):17814-17820. PubMed ID: 29115331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced field emission of WSâ‚‚ nanotubes.
    Viskadouros G; Zak A; Stylianakis M; Kymakis E; Tenne R; Stratakis E
    Small; 2014 Jun; 10(12):2398-403. PubMed ID: 24610733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient field emission from carbon nanotube-nanohorn hybrids prepared by chemical vapor deposition.
    Yuge R; Miyawaki J; Ichihashi T; Kuroshima S; Yoshitake T; Ohkawa T; Aoki Y; Iijima S; Yudasaka M
    ACS Nano; 2010 Dec; 4(12):7337-43. PubMed ID: 21067154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vapor-solid growth of few-layer graphene using radio frequency sputtering deposition and its application on field emission.
    Deng JH; Zheng RT; Zhao Y; Cheng GA
    ACS Nano; 2012 May; 6(5):3727-33. PubMed ID: 22482928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.