These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 26020653)
1. Nanotube field electron emission: principles, development, and applications. Li Y; Sun Y; Yeow JT Nanotechnology; 2015 Jun; 26(24):242001. PubMed ID: 26020653 [TBL] [Abstract][Full Text] [Related]
2. Carbon nanotube electron sources and applications. de Jonge N; Bonard JM Philos Trans A Math Phys Eng Sci; 2004 Oct; 362(1823):2239-66. PubMed ID: 15370480 [TBL] [Abstract][Full Text] [Related]
3. A novel field emission microscopy method to study field emission characteristics of freestanding carbon nanotube arrays. Li Y; Sun Y; Jaffray DA; Yeow JT Nanotechnology; 2017 Apr; 28(15):155704. PubMed ID: 28211793 [TBL] [Abstract][Full Text] [Related]
4. Efficient field emission from triode-type 1D arrays of carbon nanotubes. Shiratori Y; Furuichi K; Tsuji Y; Sugime H; Noda S Nanotechnology; 2009 Nov; 20(47):475707. PubMed ID: 19875868 [TBL] [Abstract][Full Text] [Related]
5. Carbon nanotubes as field emitter. Zou R; Hu J; Song Y; Wang N; Chen H; Chen H; Wu J; Sun Y; Chen Z J Nanosci Nanotechnol; 2010 Dec; 10(12):7876-96. PubMed ID: 21121276 [TBL] [Abstract][Full Text] [Related]
6. Field emission properties of SiO Lim YD; Hu L; Xia X; Ali Z; Wang S; Tay BK; Aditya S; Miao J Nanotechnology; 2018 Jan; 29(1):015202. PubMed ID: 29083996 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of Emission Lifetime of CNT Emitters by Coating ZnO on the CNT Surface. Yoon SH; Chung DJ; Lee J; Park KC; Kang CJ; Yoon TS; Shim EL; Choi YJ J Nanosci Nanotechnol; 2015 Nov; 15(11):9030-3. PubMed ID: 26726637 [TBL] [Abstract][Full Text] [Related]
8. Morphology dependent field emission of acid-spun carbon nanotube fibers. Fairchild SB; Boeckl J; Back TC; Ferguson JB; Koerner H; Murray PT; Maruyama B; Lange MA; Cahay MM; Behabtu N; Young CC; Pasquali M; Lockwood NP; Averett KL; Gruen G; Tsentalovich DE Nanotechnology; 2015 Mar; 26(10):105706. PubMed ID: 25694166 [TBL] [Abstract][Full Text] [Related]
9. Carbon Nanotube Field Emitters Synthesized on Metal Alloy Substrate by PECVD for Customized Compact Field Emission Devices to Be Used in X-Ray Source Applications. Park S; Gupta AP; Yeo SJ; Jung J; Paik SH; Mativenga M; Kim SH; Shin JH; Ahn JS; Ryu J Nanomaterials (Basel); 2018 May; 8(6):. PubMed ID: 29843456 [TBL] [Abstract][Full Text] [Related]
10. Forms and behaviour of vacuum emission electronic devices comprising diamond or other carbon cold cathode emitters. Davidson JL; Kang WP; Subramanian K; Wong YM Philos Trans A Math Phys Eng Sci; 2008 Jan; 366(1863):281-93. PubMed ID: 18024363 [TBL] [Abstract][Full Text] [Related]
11. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters. Nguyen DD; Tai NH; Chen SY; Chueh YL Nanoscale; 2012 Jan; 4(2):632-8. PubMed ID: 22147118 [TBL] [Abstract][Full Text] [Related]
12. High current density and longtime stable field electron transfer from large-area densely arrayed graphene nanosheet-carbon nanotube hybrids. Deng JH; Cheng L; Wang FJ; Li GZ; Li DJ; Cheng GA ACS Appl Mater Interfaces; 2014 Dec; 6(23):21558-66. PubMed ID: 25335851 [TBL] [Abstract][Full Text] [Related]
13. Effects of Interfacial Electron Transport on Field Electron Emission from Carbon Nanotube Paste Emitters. Go E; Kim JW; Jeong JW; Park S; Kang JT; Choi S; Yeon JH; Song YH ACS Appl Mater Interfaces; 2023 Oct; 15(42):49854-49864. PubMed ID: 37816129 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of the stability of electron field emission behavior and the related microplasma devices of carbon nanotubes by coating diamond films. Chang TH; Kunuku S; Hong YJ; Leou KC; Yew TR; Tai NH; Lin IN ACS Appl Mater Interfaces; 2014 Jul; 6(14):11589-97. PubMed ID: 24955653 [TBL] [Abstract][Full Text] [Related]
15. Theory of Carbon Nanotube (CNT)-Based Electron Field Emitters. Bocharov GS; Eletskii AV Nanomaterials (Basel); 2013 Jul; 3(3):393-442. PubMed ID: 28348342 [TBL] [Abstract][Full Text] [Related]
16. Field Emission Cathodes to Form an Electron Beam Prepared from Carbon Nanotube Suspensions. Laszczyk KU Micromachines (Basel); 2020 Feb; 11(3):. PubMed ID: 32121329 [TBL] [Abstract][Full Text] [Related]
17. Single-walled carbon nanotube thermionic electron emitters with dense, efficient and reproducible electron emission. Wang Y; Wu G; Xiang L; Xiao M; Li Z; Gao S; Chen Q; Wei X Nanoscale; 2017 Nov; 9(45):17814-17820. PubMed ID: 29115331 [TBL] [Abstract][Full Text] [Related]
18. Enhanced field emission of WSâ‚‚ nanotubes. Viskadouros G; Zak A; Stylianakis M; Kymakis E; Tenne R; Stratakis E Small; 2014 Jun; 10(12):2398-403. PubMed ID: 24610733 [TBL] [Abstract][Full Text] [Related]
19. Highly efficient field emission from carbon nanotube-nanohorn hybrids prepared by chemical vapor deposition. Yuge R; Miyawaki J; Ichihashi T; Kuroshima S; Yoshitake T; Ohkawa T; Aoki Y; Iijima S; Yudasaka M ACS Nano; 2010 Dec; 4(12):7337-43. PubMed ID: 21067154 [TBL] [Abstract][Full Text] [Related]
20. Vapor-solid growth of few-layer graphene using radio frequency sputtering deposition and its application on field emission. Deng JH; Zheng RT; Zhao Y; Cheng GA ACS Nano; 2012 May; 6(5):3727-33. PubMed ID: 22482928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]