These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
497 related articles for article (PubMed ID: 26020972)
1. AICAR Enhances the Phagocytic Ability of Macrophages towards Apoptotic Cells through P38 Mitogen Activated Protein Kinase Activation Independent of AMP-Activated Protein Kinase. Quan H; Kim JM; Lee HJ; Lee SH; Choi JI; Bae HB PLoS One; 2015; 10(5):e0127885. PubMed ID: 26020972 [TBL] [Abstract][Full Text] [Related]
2. Stearoyl lysophosphatidylcholine enhances the phagocytic ability of macrophages through the AMP-activated protein kinase/p38 mitogen activated protein kinase pathway. Quan H; Hur YH; Xin C; Kim JM; Choi JI; Kim MY; Bae HB Int Immunopharmacol; 2016 Oct; 39():328-334. PubMed ID: 27517519 [TBL] [Abstract][Full Text] [Related]
4. AICAR induces cyclooxygenase-2 expression through AMP-activated protein kinase-transforming growth factor-beta-activated kinase 1-p38 mitogen-activated protein kinase signaling pathway. Chang MY; Ho FM; Wang JS; Kang HC; Chang Y; Ye ZX; Lin WW Biochem Pharmacol; 2010 Oct; 80(8):1210-20. PubMed ID: 20615388 [TBL] [Abstract][Full Text] [Related]
5. Involvement of AMP-activated protein kinase and p38 mitogen-activated protein kinase in 8-Cl-cAMP-induced growth inhibition. Han JH; Ahn YH; Choi KY; Hong SH J Cell Physiol; 2009 Jan; 218(1):104-12. PubMed ID: 18756496 [TBL] [Abstract][Full Text] [Related]
6. Involvement of Akt2/protein kinase B β (PKBβ) in the 8-Cl-cAMP-induced cancer cell growth inhibition. Choi KY; Ahn YH; Ahn HW; Cho YJ; Hong SH J Cell Physiol; 2013 Apr; 228(4):890-902. PubMed ID: 23018889 [TBL] [Abstract][Full Text] [Related]
7. 5-Aminoimidazole-4-carboxamide riboside suppresses lipopolysaccharide-induced TNF-alpha production through inhibition of phosphatidylinositol 3-kinase/Akt activation in RAW 264.7 murine macrophages. Jhun BS; Jin Q; Oh YT; Kim SS; Kong Y; Cho YH; Ha J; Baik HH; Kang I Biochem Biophys Res Commun; 2004 May; 318(2):372-80. PubMed ID: 15120611 [TBL] [Abstract][Full Text] [Related]
9. Activation of AMP-activated protein kinase suppresses oxidized low-density lipoprotein-induced macrophage proliferation. Ishii N; Matsumura T; Kinoshita H; Motoshima H; Kojima K; Tsutsumi A; Kawasaki S; Yano M; Senokuchi T; Asano T; Nishikawa T; Araki E J Biol Chem; 2009 Dec; 284(50):34561-9. PubMed ID: 19843515 [TBL] [Abstract][Full Text] [Related]
10. The effect of 5-aminoimidazole-4-carboxamide-ribonucleoside was mediated by p38 mitogen activated protein kinase signaling pathway in FRO thyroid cancer cells. Kim WG; Choi HJ; Kim TY; Shong YK; Kim WB Korean J Intern Med; 2014 Jul; 29(4):474-81. PubMed ID: 25045295 [TBL] [Abstract][Full Text] [Related]
11. AICAR stimulates IL-6 production via p38 MAPK in cardiac fibroblasts in adult mice: a possible role for AMPK. Du JH; Xu N; Song Y; Xu M; Lu ZZ; Han C; Zhang YY Biochem Biophys Res Commun; 2005 Dec; 337(4):1139-44. PubMed ID: 16229818 [TBL] [Abstract][Full Text] [Related]
12. AMPK activation enhances PPARα activity to inhibit cardiac hypertrophy via ERK1/2 MAPK signaling pathway. Meng R; Pei Z; Zhang A; Zhou Y; Cai X; Chen B; Liu G; Mai W; Wei J; Dong Y Arch Biochem Biophys; 2011 Jul; 511(1-2):1-7. PubMed ID: 21530483 [TBL] [Abstract][Full Text] [Related]
13. AMP-activated protein kinase activates p38 mitogen-activated protein kinase by increasing recruitment of p38 MAPK to TAB1 in the ischemic heart. Li J; Miller EJ; Ninomiya-Tsuji J; Russell RR; Young LH Circ Res; 2005 Oct; 97(9):872-9. PubMed ID: 16179588 [TBL] [Abstract][Full Text] [Related]
14. Dissociation of AMP-activated protein kinase and p38 mitogen-activated protein kinase signaling in skeletal muscle. Ho RC; Fujii N; Witters LA; Hirshman MF; Goodyear LJ Biochem Biophys Res Commun; 2007 Oct; 362(2):354-9. PubMed ID: 17709097 [TBL] [Abstract][Full Text] [Related]
15. The AMP-activated protein kinase activator AICAR does not induce GLUT4 translocation to transverse tubules but stimulates glucose uptake and p38 mitogen-activated protein kinases alpha and beta in skeletal muscle. Lemieux K; Konrad D; Klip A; Marette A FASEB J; 2003 Sep; 17(12):1658-65. PubMed ID: 12958172 [TBL] [Abstract][Full Text] [Related]
16. 5-aminoimidazole-4-carboxamide riboside (AICAR) enhances GLUT2-dependent jejunal glucose transport: a possible role for AMPK. Walker J; Jijon HB; Diaz H; Salehi P; Churchill T; Madsen KL Biochem J; 2005 Jan; 385(Pt 2):485-91. PubMed ID: 15367103 [TBL] [Abstract][Full Text] [Related]
17. AMP-activated protein kinase signaling stimulates VEGF expression and angiogenesis in skeletal muscle. Ouchi N; Shibata R; Walsh K Circ Res; 2005 Apr; 96(8):838-46. PubMed ID: 15790954 [TBL] [Abstract][Full Text] [Related]
18. Anti-inflammatory activities of fenoterol through β-arrestin-2 and inhibition of AMPK and NF-κB activation in AICAR-induced THP-1 cells. Wang W; Chen J; Li XG; Xu J Biomed Pharmacother; 2016 Dec; 84():185-190. PubMed ID: 27657826 [TBL] [Abstract][Full Text] [Related]
19. Stimulation of glucose transport by AMP-activated protein kinase via activation of p38 mitogen-activated protein kinase. Xi X; Han J; Zhang JZ J Biol Chem; 2001 Nov; 276(44):41029-34. PubMed ID: 11546797 [TBL] [Abstract][Full Text] [Related]
20. 5-Aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside stimulates tyrosine hydroxylase activity and catecholamine secretion by activation of AMP-activated protein kinase in PC12 cells. Fukuda T; Ishii K; Nanmoku T; Isobe K; Kawakami Y; Takekoshi K J Neuroendocrinol; 2007 Aug; 19(8):621-31. PubMed ID: 17620104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]