These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 26021079)

  • 21. Assessment of potential adjuvanticity of Cry proteins.
    Joshi SS; Barnett B; Doerrer NG; Glenn K; Herman RA; Herouet-Guicheney C; Hunst P; Kough J; Ladics GS; McClain S; Papineni S; Poulsen LK; Rascle JB; Tao AL; van Ree R; Ward J; Bowman CC
    Regul Toxicol Pharmacol; 2016 Aug; 79():149-155. PubMed ID: 27105772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insecticidal activity of transgenic tobacco plants expressing both Bt and CpTI genes on cotton bollworm (Helicoverpa armigera).
    Fan X; Shi X; Zhao J; Zhao R; Fan Y
    Chin J Biotechnol; 1999; 15(1):1-5. PubMed ID: 10668128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of Bt crops in Canada.
    Macdonald P; Yarrow S
    J Invertebr Pathol; 2003 Jun; 83(2):93-9. PubMed ID: 12788275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combining pest control and resistance management: synergy of engineered insects with Bt crops.
    Alphey N; Bonsall MB; Alphey L
    J Econ Entomol; 2009 Apr; 102(2):717-32. PubMed ID: 19449654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression of an engineered synthetic cry2Aa (D42/K63F/K64P) gene of Bacillus thuringiensis in marker free transgenic tobacco facilitated full-protection from cotton leaf worm (S. littoralis) at very low concentration.
    Gayen S; Mandal CC; Samanta MK; Dey A; Sen SK
    World J Microbiol Biotechnol; 2016 Apr; 32(4):62. PubMed ID: 26925624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decaplex and real-time PCR based detection of MON531 and MON15985 Bt cotton events.
    Randhawa GJ; Chhabra R; Singh M
    J Agric Food Chem; 2010 Sep; 58(18):9875-81. PubMed ID: 20687600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Next-generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance.
    Ni M; Ma W; Wang X; Gao M; Dai Y; Wei X; Zhang L; Peng Y; Chen S; Ding L; Tian Y; Li J; Wang H; Wang X; Xu G; Guo W; Yang Y; Wu Y; Heuberger S; Tabashnik BE; Zhang T; Zhu Z
    Plant Biotechnol J; 2017 Sep; 15(9):1204-1213. PubMed ID: 28199783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The interaction of two-spotted spider mites, Tetranychus urticae Koch, with Cry protein production and predation by Amblyseius andersoni (Chant) in Cry1Ac/Cry2Ab cotton and Cry1F maize.
    Guo YY; Tian JC; Shi WP; Dong XH; Romeis J; Naranjo SE; Hellmich RL; Shelton AM
    Transgenic Res; 2016 Feb; 25(1):33-44. PubMed ID: 26545599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Economic, ecological, food safety, and social consequences of the deployment of bt transgenic plants.
    Shelton AM; Zhao JZ; Roush RT
    Annu Rev Entomol; 2002; 47():845-81. PubMed ID: 11729093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control.
    Roh JY; Choi JY; Li MS; Jin BR; Je YH
    J Microbiol Biotechnol; 2007 Apr; 17(4):547-59. PubMed ID: 18051264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Natural refuge crops, buildup of resistance, and zero-refuge strategy for Bt cotton in China.
    Qiao F; Huang J; Rozelle S; Wilen J
    Sci China Life Sci; 2010 Oct; 53(10):1227-38. PubMed ID: 20953946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Limited fitness advantages of crop-weed hybrid progeny containing insect-resistant transgenes (Bt/CpTI) in transgenic rice field.
    Yang X; Wang F; Su J; Lu BR
    PLoS One; 2012; 7(7):e41220. PubMed ID: 22815975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stacked Bt Proteins Pose No New Risks to Nontarget Arthropods.
    Romeis J; Meissle M
    Trends Biotechnol; 2020 Mar; 38(3):234-236. PubMed ID: 31952834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plant science. Communal benefits of transgenic corn.
    Tabashnik BE
    Science; 2010 Oct; 330(6001):189-90. PubMed ID: 20929767
    [No Abstract]   [Full Text] [Related]  

  • 35. The fate and transport of the Cry1Ab protein in an agricultural field and laboratory aquatic microcosms.
    Strain KE; Lydy MJ
    Chemosphere; 2015 Aug; 132():94-100. PubMed ID: 25828252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transgenic plants: an emerging approach to pest control.
    Estruch JJ; Carozzi NB; Desai N; Duck NB; Warren GW; Koziel MG
    Nat Biotechnol; 1997 Feb; 15(2):137-41. PubMed ID: 9035137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-Toxin Resistance Enables Pink Bollworm Survival on Pyramided Bt Cotton.
    Fabrick JA; Unnithan GC; Yelich AJ; DeGain B; Masson L; Zhang J; Carrière Y; Tabashnik BE
    Sci Rep; 2015 Nov; 5():16554. PubMed ID: 26559899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cis-mediated down-regulation of a trypsin gene associated with Bt resistance in cotton bollworm.
    Liu C; Xiao Y; Li X; Oppert B; Tabashnik BE; Wu K
    Sci Rep; 2014 Nov; 4():7219. PubMed ID: 25427690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of plants genetically modified for insect resistance on nontarget organisms.
    O'Callaghan M; Glare TR; Burgess EP; Malone LA
    Annu Rev Entomol; 2005; 50():271-92. PubMed ID: 15355241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transgenic cotton co-expressing chimeric Vip3AcAa and Cry1Ac confers effective protection against Cry1Ac-resistant cotton bollworm.
    Chen WB; Lu GQ; Cheng HM; Liu CX; Xiao YT; Xu C; Shen ZC; Soberón M; Bravo A; Wu KM
    Transgenic Res; 2017 Dec; 26(6):763-774. PubMed ID: 29143178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.